• 제목/요약/키워드: Water-air coupling

검색결과 39건 처리시간 0.017초

트라우즐 연주시험과 수치해석에 의한 전색 매질별 발파효과 영향에 관한 연구 (Study on Blast Effects of Stemming Materials by Trauzl Lead Block Test and Numerical Analysis)

  • 고영훈;김승준;;양형식
    • 화약ㆍ발파
    • /
    • 제35권4호
    • /
    • pp.19-26
    • /
    • 2017
  • 트라우즐 연주시험은 폭발물의 영향을 측정하기 위한 방법 중 하나이다. 일정크기 연주기둥 중앙의 발파공 내부에서 폭발에 의한 용적 확대량을 측정하여 폭발력을 측정하는데 이용된다. 본 연구에서는 발파공 내부 폭약주변의 채움재에 따른 폭발영향을 비교분석하기 위하여 트라우즐 연주시험 및 AUTODYN 수치해석을 하였다. 사용폭약은 일반 에멀젼 폭약을 적용하였고, 디커플링 조건과 모래, 물, 젤라틴의 충전재를 선정하였다. 시험 및 수치해석 결과 연주블록 발파공의 확대 정도는 물과 젤라틴이 유사하였고, 모래, 디커플링 조건 순으로 확대치를 나타냈다. 또한 연주기둥 외곽에서 측정한 동적 변형률 및 수치해석 전달압력의 경우 시험결과와 상응하였고, 같은 양상을 확인할 수 있었다.

발파공 내 전색물의 커플링 효과에 대한 AUTODYN 수치해석 (Coupling Effects of Stemming Materials in Blasting Hole by AUTODYN Analysis)

  • ;고영훈;양형식
    • 화약ㆍ발파
    • /
    • 제35권3호
    • /
    • pp.9-14
    • /
    • 2017
  • 전색물 충전이 발파공에서 주변 암반으로 압력파를 전달하는 데 미치는 영향을 AUTODYN으로 해석하고 비교하였다. 공기, 모래, 물, 10%와 20% 젤라틴의 다섯 전색물을 선정하였다. 수치해석 결과 발파공 주변의 관측점은 전색물에 따라 각각 다른 압력을 보였으며 고압일수록 파쇄도가 높은 것으로 간주하였을 때 20% 젤라틴이 가장 나은 것을 알 수 있었다. 따라서 젤라틴은 충전재로서 모래나 물 이상의 효과를 나타내는 것으로 확인되었다.

Fluid Effects on the Core Seismic Behavior of a Liquid Metal Reactor

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2125-2136
    • /
    • 2004
  • In this paper, a numerical application algorithm for applying the CFAM (Consistent Fluid Added Mass) matrix for a core seismic analysis is developed and applied to the 7-ducts core system to investigate the fluid effects on the dynamic characteristics and the seismic time history responses. To this end, three cases such as the in-air condition, the in-water condition without the fluid coupling terms, and the in-water condition with the fluid coupling terms are considered in this paper. From modal analysis, the core duct assemblies revealed strongly coupled out-of-phase vibration modes unlike the other cases with the fluid coupling terms considered. From the results of the seismic time history analysis, it was also verified that the fluid coupling terms in the CFAM matrix can significantly affect the impact responses and the seismic displacement responses of the ducts.

간극공기압을 고려하는 불포화토의 유한요소해석 (Finite Element Analysis of Partially Saturated Soil Considering Pore-air Pressure)

  • 김재홍;황영철
    • 한국지반공학회논문집
    • /
    • 제27권3호
    • /
    • pp.95-102
    • /
    • 2011
  • 불포화 지반을 이루고 있는 흙의 알갱이, 물과 공기의 연계해석이 전체 지반의 변형에 미치는 영향을 알아보고자, 흙 알갱이와 물의 두 가지 요소로 해석되어지는 기존 관점과의 차이를 분석하고 그에 대한 원인을 비교하였다. 열역학적 가정을 토대로 평형방정식을 이용하여 불포화토 거동을 지배하는 물과 공기의 흐름 관계를 유한요속해석을 위한 수학적인 알고리즘을 유도하여 배수시험 수치해석을 통해 기존 문헌과 비교 검증하였다. 3상으로 이루어진 불포화토 거동을 통해서 흙의 알갱이와 물과의 상호작용에서 공기압의 역할을 분석하여 불포화 지반 내에 물과 공기의 두가지 흐름에 대해 지반공학적인 적용성을 알아보았다.

건식 열교환기를 이용한 백연방지 냉각탑 성능의 수치해석적 연구 (A Numerical Study on the Performance Analysis of Plume Abatement Cooling Tower with Dry Type Heat Exchanger)

  • 김병조;최영기
    • 설비공학논문집
    • /
    • 제15권12호
    • /
    • pp.1018-1027
    • /
    • 2003
  • This study treats the analysis of the performance and the design of plume abatement wet/dry cooling tower with dry type heat exchanger using a numerical method. A two-dimensional analysis is performed using the finite volume method for mechanical draft counterflow and crossflow tower. For a coupling problem between water and air system, a turbulent two phase flow is considered. Effectiveness-NTU method is used for modeling of the dry type heat exchanger. The parameter change simulations of the outer wall shape, the relative flowrate of air, and attachment of an air mixer are performed to examine the effect on plume abatement. It is found that if the relative air flowrate ratio and the adequate air mixer type are chosen well in addition to the ratio of water to air flowrate, the loss of the cooling capacity and the additional cost are reduced and the plume is abated.

Numerical Study on the Performance Analysis of Plume Abatement Cooling Tower with Dry Type Heat Exchanger

  • Kim, Byung-Jo;Choi, Young-Ki
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권2호
    • /
    • pp.61-70
    • /
    • 2005
  • This study treats the numerical analysis of performance and design for plume abatement wet/dry cooling tower with a dry type heat exchanger. A two-dimensional analysis is performed using the finite volume method for mechanical draft counterflow and crossflow tower. For a coupling problem between water and air system, a turbulent two phase flow is considered. The Effectiveness-NTU method is used for modeling of the dry type heat exchanger. The parametric simulations such as the relative flowrate of air and attachment length of an air mixer are performed to examine the effect on plume abatement. It is found that if the relative air flowrate ratio and the adequate air mixer type are chosen well in addition to the ratio of water to air flowrate, the loss of cooling capacity and the additional cost are reduced and the plume is abated.

Influence of Resin-Infiltrated Time on Wood Natural Materials Using Conventional/Air-Coupled Ultrasound Waves

  • Park, Je-Woong;Kim, Do-Jung;Kweon, Young-Sub;Im, Kwang-Hee;Hsu, David K.;Kim, Sun-Kyu;Yang, In-Young
    • 비파괴검사학회지
    • /
    • 제29권3호
    • /
    • pp.235-241
    • /
    • 2009
  • Composite wood materials are very sensitive to water and inspection without any coupling medium of a liquid is really needed to wood materials due to the permeation of coupling medium such as water. However, air-coupled ultrasound has obvious advantages over water-coupled experimentation compared with conventional C-scanner. In this work, it is desirable to perform contact-less nondestructive evaluation to assess wood material homogeneity. A wood material was nondestructively characterized with non-contact and contact modes to measure ultrasonic velocity using automated data acquisition software. We have utilized a proposed peak-delay measurement method. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. The variation of ultrasonic velocity was found to be somewhat difference due to air-coupled limitations over conventional scan images. However, conventional C-scan images are well agreed with increasing the resin-infiltrated time as expected. Finally, we have developed a measurement system of an ultrasonic velocity based on data acquisition software for obtaining ultrasonic quantitative data for correlation with C-scan images.

비상시 열원중단에 따른 데이터센터의 냉각시스템 열성능 평가에 관한 사례연구 (A Study on Thermal Analysis for a Data Center Cooling System under Fault Conditions at a Chilled Water Plant)

  • 조진균;강호석
    • 설비공학논문집
    • /
    • 제28권5호
    • /
    • pp.178-185
    • /
    • 2016
  • This study describes the analysis of a 20 MW chilled water plant used for the IT cooling of a recently constructed data center in Korea. The CFD model was developed with the aim of evaluating the impact of problems such as chiller failure on the water and air temperatures in the cooling system. The numerical model includes the chilled water hydraulic network and individual water-to-air CRAC units. The coupling between the IT server room air temperature levels and the cooling plant has enabled a full assessment of the cooling system design in response to system fault conditions to be performed. The paper examines an emergency situation involving the failure of the cooling plant, and shows how the inherent thermal inertia of the system along with additional inertia achieved through buffer systems allowed a suitable design to be achieved.

Dynamic and static structure analysis of the Obermeyer gate under overflow conditions

  • Feng, Jinhai;Zhou, Shiyue;Xue, Boxiang;Chen, Diyi;Sun, Guoyong;Li, Huanhuan
    • Computers and Concrete
    • /
    • 제29권4호
    • /
    • pp.209-217
    • /
    • 2022
  • In order to analyze the static and dynamic structural characteristics of the Obermeyer gate under overflow conditions, the force characteristics and vibration characteristics of the shield plate structure are studied based on the fluid-solid coupling theory. In this paper, the effects of the flow rate, airbag pressure and overflow water level on the structural performance of shield plate of air shield dam are explored through the method of controlling variables. The results show that the maximum equivalent stress and total deformation of the shield plate decrease first and then increase with the flow velocity. In addition, they are positively correlated with the airbag pressure. What's more, we find that the maximum equivalent stress of the shield plate decreases first and then increases with the overflow water level, and the total deformation of the shield plate decreases with the overflow water level. What's more importantly, the natural frequency of the shield structure of the Obermeyer gate is concentrated at 50 Hz and 100 Hz, so there is still the possibility of resonance. Once the resonance occurs, the free edge of the shield vibrates back and forth. This work may provide a theoretical reference for the safe and stable operation of the shield of the Obermeyer gate.

공정변수(工程變數)와 MAPP 결합제(結合劑)가 난기류(亂氣流) 혼합방식(混合方式)에 의하여 제조(製造)된 목섬유(木纖維)-폴리프로필렌섬유(纖維) 복합재(複合材)의 성질(性質)에 미치는 영향(影響) (Effects of Process Variables and MAPP Coupling Agent on Properties of Wood Fiber-Polypropylene Fiber Composite by Turbulent Air Mixing)

  • 윤형운;박종영
    • Journal of the Korean Wood Science and Technology
    • /
    • 제26권1호
    • /
    • pp.76-86
    • /
    • 1998
  • Effects of processing variables and MAPP (maleic anhydride polypropylene) coupling agent on the properties of composite were discussed for turbulent-air-mixed woodfiber-polypropylenefiber composites. In this research, density, composition ratio, and mat moisture content were established as processing variables, and emulsified MAPP prepared by direct pressure method was incorporated as the coupling agent. And the turbulent air mixer, which was improved in function through alteration of our previous fiber mixer, was used to mix wood fibers and polypropylene fibers. At the addition level of 1% MAPP, based on oven-dried wood fiber weight, woodfiber-polypropylenefiber composites generally showed enhanced the physical and mechanical properties. And composites with low to medium densities of 0.6 to 0.8g/$cm^3$ greatly increased in these property values than with high densities of 1.0g/$cm^3$ or more by adding 1 % MAPP. Thus, MAPP addition was thought to be an effective way of enhancing properties for nonwoven web composites. At the mat moisture contents of 5 to 20%, however, the physical and mechanical properties were not enhanced by adding 1% MAPP. In the composites containing 15% polypropylene fibers, the lowest thickness swelling and water absorption values were observed at the 1% MAPP level. The addition of more than 1% MAPP had the adverse effect on the physical and mechanical properties of composites.

  • PDF