Study on Blast Effects of Stemming Materials by Trauzl Lead Block Test and Numerical Analysis

트라우즐 연주시험과 수치해석에 의한 전색 매질별 발파효과 영향에 관한 연구

  • 고영훈 (전남대학교 에너지자원공학과) ;
  • 김승준 (전남대학교 에너지자원공학과) ;
  • ;
  • 양형식 (전남대학교 에너지자원공학과)
  • Received : 2017.12.04
  • Accepted : 2017.12.15
  • Published : 2017.12.27

Abstract

The most widely used method for determining the blast effects of explosives is the Trauzl lead block test. This test is used to measure the explosive power (strength) of a substance by determining volume increase, which is produced by the detonation of a test explosive charged in the cavity of a lead block with defined quantity and size. In this paper, Trazul lead block test and AUTODYN numerical analysis were conducted to evaluate the coupling medium effect of blast hole. The effects of coupling materials can be expressed as the expansion of the cavity in a standard lead block through explosion of the explosives. The tests were conducted with emulsion explosives. The coupling mediums used as the filling material around a explosive charge were air, sand, water and gelatine. Results of test and numerical analysis showed that expansion of lead block were much more affected by water&gel than by sand and air. The water and gel showed similar results. As expected, the transmitted pressure and dynamic strain was higher in water and gelatine coupled blast hole than in air and sand.

트라우즐 연주시험은 폭발물의 영향을 측정하기 위한 방법 중 하나이다. 일정크기 연주기둥 중앙의 발파공 내부에서 폭발에 의한 용적 확대량을 측정하여 폭발력을 측정하는데 이용된다. 본 연구에서는 발파공 내부 폭약주변의 채움재에 따른 폭발영향을 비교분석하기 위하여 트라우즐 연주시험 및 AUTODYN 수치해석을 하였다. 사용폭약은 일반 에멀젼 폭약을 적용하였고, 디커플링 조건과 모래, 물, 젤라틴의 충전재를 선정하였다. 시험 및 수치해석 결과 연주블록 발파공의 확대 정도는 물과 젤라틴이 유사하였고, 모래, 디커플링 조건 순으로 확대치를 나타냈다. 또한 연주기둥 외곽에서 측정한 동적 변형률 및 수치해석 전달압력의 경우 시험결과와 상응하였고, 같은 양상을 확인할 수 있었다.

Keywords

References

  1. 고영훈, 양형식, 2017, 발파공 내 전색물의 커플링 효과에 대한 AUTODYN 수치해석, 화약․발파(대한화약발파공학회지) Vol 35, No.3, pp. 9-14.
  2. Antoun, T., E. Herbold and S. Johnson, 2012, Dynamic behavior of sand: Annual Report FY 11, Lawrence Livermore National Laboratory.
  3. Awoukeng, G. A., L. Taddei, F. Tostain and S. Roth, 2014, Investigations of impact biomechanics for penetrating ballistic cases, Bio-med Mater Eng, 24.6 pp. 2331-2339. https://doi.org/10.3233/BME-141046
  4. Bohloli, B., G. Gustafson and B. Ronge, 2001, A laboratory study on reducing the quantity of rock fines at failure: application to rock blasting and crushing, Bull Eng Geol Env 60, pp. 271-276. https://doi.org/10.1007/s100640100102
  5. Cook, J. R., R. R. Bouchard and S. Y. Emelianov, 2011, Tissue-mimicking phantoms for photo acoustic and ultrasonic imaging, Biomedical Optics Express 2.11, 3193-3206. https://doi.org/10.1364/BOE.2.003193
  6. Hamilton, E. L., 1969, Sound velocity and related properties of marine sediments, North Pacific, J Geophy Res, 75.23, pp. 4423-4445. https://doi.org/10.1029/JB075i023p04423
  7. Huang, Y., 2015, Determining the equation of state (EOS) for ballistic gelatin, US Army Research Laboratory (ARL-TR-7467), pp. 22.
  8. Winter, J. et al, 1975, The material properties for gelatin gels, Ballistic Research laboratories (ADA008396), pp. 167.
  9. Yoon, G. H., J. S. Mo, K. H. Kim, C. H. Yoon and N. H. Lim, 2015, Investigation of bullet penetration in ballistic gelatin via finite element simulation and experiment, J Mech Sci Tech, 29.9, pp. 3747-3759. https://doi.org/10.1007/s12206-015-0821-7
  10. Zheming Z., X. Heping, M. Bibhu, 2008, Numerical investigation of blasting-induced damage in cylindrical rocks, International Journal of Rock Mechanics & Mining Sciences, 45, pp. 111-121. https://doi.org/10.1016/j.ijrmms.2007.04.012