• Title/Summary/Keyword: Water-$Al_2O_3$

Search Result 561, Processing Time 0.032 seconds

Measurement of the Thermal Conductivity of Alumina/Zinc-Oxide/Titanium-Oxide Nanofluids (알루미나/산화아연/이산화티타늄 나노유체의 열전도율 측정)

  • Kim Sang Hyun;Choi Sun Rock;Hong Jonggan;Kim Dongsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1065-1073
    • /
    • 2005
  • The thermal conductivity of water- and ethylene glycol-based nanofluids containing alumina $(Al_2O_3)$, zinc oxide (ZnO) and titanium dioxide $(TiO_2)$ nanoparticles is measured by varying the particle diameter and volume fraction. The transient hot-wire method using an anodized tantalum wire for electrical insulation is employed for the measurement. The experimental results show that nanofluids have substantially higher thermal conductivities than those of the base fluid and the ratio of thermal conductivity enhancement increases linearly with the volume fraction. It has been found that the ratio of thermal conductivity enhancement increases with decreasing particle size but no empirical or theoretical correlation can explain the particle-size dependence of the thermal conductivity. This work provides, for the first time to our knowledge, a set of consistent experimental data over a wide range of nanofluid conditions and can therefore serve as a basis for developing theoretical models to predict thermal conduction phenomena in nanofluids.

Characteristics of Groundwater Quality in Sasang Industrial Area, Busan Metropolitan City (부산시 사상공단지역의 지하수 수질 특성)

  • Hamm, Se-Yeong;Kim, Kwang-Sung;Lee, Jeong-Hwan;Cheong, Jae-Yeol;Sung, Ig-Hwan;Jang, Seong
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.753-770
    • /
    • 2006
  • In urban areas, groundwater pollution is heavily affected by urbanization with land use types. This study aims to characterize groundwater quality and contamination in Sasang industrial area of Busan Metropolitan City where metalworking, machinery and footwear factories are located. Busan Metropolitan City is the highest in the utilization of groundwater resources among the metropolitan cities in Korea. $K^+,\;Na^+,\;Ca^{2+},\;Mg^{2+},\;Cl^-,\;SO_4^{2-}\;and\;HCO_3^-$ concentrations, and electrical conductivity (EC), total dissolved solids (TDS) and salinity are high in the areas near the Nakdong River. The results are attributed to the influence of salt water which intruded into the coastal sediments during sedimentation. In addition, the dominant chemical type of Ca-Cl indicates the influence of salt water in the geological formations as well as anthropogenic pollution. $SiO_2$ ion is interpreted to originate from both water-silicate mineral reactions and the decomposition of cement concretes. Trichloroethylene (TCE) was detected at 12 sites of total 18 sites. However, tetrachloroethylene (PCE) was detected at f sites and 1.1.1-trichloroethane (TCA) at 3 sites. According to the factor analysis, factor 1 was explained by 49.8%, factor 2 19.8%, and factor 3 11.0% with total 80.6% explanation. pH, TDS, salinity, $Ca^{2+},\;K^+,\;Mg^{2+},\;Na^+,\;Al^{3+},\;As^{3+},\;Cl^-\;and\;Fe^{2+}$ were positively highly loaded to factor 1. The chemical components loaded to factor 1 represent the chemical characteristics of both industrial pollution and influence by salt water. Based on the cluster analysis and distribution pattern of chemical components, the concentration of $Na^+,\;Ca^{2+},\;Cl^-,\;SO_4^{2-}\;K^+,\;and\;Mg^{2+}$ is high in the riverside area of the Nakdong River composed of coastal sediments that is influenced by salt water. The downstream area of the Hakjang Stream is judged to be affected by both salt water and artificial pollution. The other part of the study area is interpreted by anthropogenic pollution.

A Study of Fluoride and Arsenic Adsorption from Aqueous Solution Using Alum Sludge Based Adsorbent (알럼 슬러지 기반 흡착제를 이용한 수용액상 불소 및 비소 흡착에 관한 연구)

  • Lee, Joon Hak;Ji, Won Hyun;Lee, Jin Soo;Park, Seong Sook;Choi, Kung Won;Kang, Chan Ung;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.667-675
    • /
    • 2020
  • An Alum-sludge based adsorbent (ASBA) was synthesized by the hydrothermal treatment of alum sludge obtained from settling basin in water treatment plant. ASBA was applied to remove fluoride and arsenic in artificially-contaminated aqueous solutions and mine drainage. The mineralogical crystal structure, composition, and specific surface area of ASBA were identified. The result revealed that ASBA has irregular pores and a specific surface area of 87.25 ㎡ g-1 on its surface, which is advantageous for quick and facile adsorption. The main mineral components of the adsorbent were found to be quartz(SiO2), montmorillonite((Al,Mg)2Si4O10(OH)2·4H2O) and albite(NaAlSi3O8). The effects of pH, reaction time, initial concentration, and temperature on removal of fluoride and arsenic were examined. The results of the experiments showed that, the adsorbed amount of fluoride and arsenic gradually decreased with increasing pH. Based on the results of kinetic and isotherm experiments, the maximum adsorption capacity of fluoride and arsenic were 7.6 and 5.6 mg g-1, respectively. Developed models of fluoride and arsenic were suitable for the Langmuir and Freundlich models. Moreover, As for fluoride and arsenic, the increase rate of adsorption concentration decreased after 8 and 12 hr, respectively, after the start of the reaction. Also, the thermodynamic data showed that the amount of fluoride and arsenic adsorbed onto ASBA increased with increasing temperature from 25℃ to 35℃, indicating that the adsorption was endothermic and non-spontaneous reaction. As a result of regeneration experiments, ASBA can be regenerated by 1N of NaOH. In the actual mine drainage experiment, it was found that it has relatively high removal rates of 77% and 69%. The experimental results show ASBA is effective as an adsorbent for removal fluoride and arsenic from mine drainage, which has a small flow rate and acid/neutral pH environment.

Elastic Behavior of Zeolite Mesolite under Hydrostatic Pressure (제올라이트 메소라이트의 수압 하 탄성특성)

  • Lee, Yong-Jae;Lee, Yong-Moon;Seoung, Dong-Hoon;Jang, Young-Nam
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.509-512
    • /
    • 2009
  • Powder diffraction patterns of the zeolite mesolite ($Na_{5.33}Ca_{5.33}Al_{16}Si_{24}O_{80}{\cdot}21.33H_2O$), with a natrolite framework topology were measured as a function of pressure up to 5.0 GPa using a diamond-anvil cell and a $200{\mu}m$-focused monochromatic synchrotron X-ray. Under the hydrostatic conditions mediated by pore-penetrating alcohol and water mixture, the elastic behavior of mesolite is characterized by continuous volume expansion between ca. 0.5 and 1.5 GPa, which results from expansion in the ab-plane and contraction along the c-axis. Subsequent to this anomalous behavior, changes in the powder diffraction patterns suggest possible reentrant order-disorder transition. The ordered layers of sodium- and calcium-containing channels in a 1:2 ratio along the b-axis attribute to the $3b_{natrolite}$ cell below 1.5 GPa. When the volume expansion is completed above 1.5 GPa, such characteristic ordering reflections disappear and the $b_{natrolite}$ cell persists with marginal volume contraction up to ca. 2.5 GPa. Further increase in pressure leads to progressive volume contraction and appears to generate another set of superlattice reflections in the $3c_{natrolite}$ cell. This suggests that mesolite in the pressure-induced hydration state experiences order-disorder-order transition involving the motions of sodium and calcium cations either through cross-channel diffusion or within the respective channels.

A Study of Recycling Process to Recovery Valuable Resources from Aluminum Black Dross (알루미늄 블랙드로스로부터 유가자원 회수를 위한 재활용 공정 연구)

  • Kang, Yubin;Im, Byoungyong;Kim, Dae-Guen;Lee, Chan Gi;Ahn, Byung-Doo;Kim, Yong Hwan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.61-68
    • /
    • 2018
  • The aluminum dross is oxide generated on the surface of the molten metal during the aluminum melting process and it is divided into white dross and black dross according to presence of the Salt flux. White dross has high metal content and is recycled via the melting process. Black dross is largely berried, because the it has a low metal content and difficulty in separating the components. Black dross contains a salt components such as NaCl and KCl, and inorganic materials such as $Al_2O_3$ and MgO, and it is necessary to study the technology to recover and recycle such valuable resources. In this study, a process for recycling aluminum black dross was proposed. The inorganic and soluble substances present in the black dross were separated through crushing-dissolution-solid/liquid separation-decompression evaporating. By controlling the ratio of water and black dross, the recovery condition of the separated product was optimized and we confirmed the highest Salt flux recovery efficiency 91 wt.% at black dross:water ratio 1:9. Finally, Through the synthesis of zeolite using recovered ceramic material, the materialization possibility of black dross was confirmed.

The Effects of Temperature, Coagulants, and Pre-chlorination on the Removal of Cryptosporidium and Giardia by Coagulation Process (응집침전공정에서 수온, 응집제 종류, 전염소 주입에 따른 크립토스포리 디움과 지아디아 제거 효율 변화에 관한 연구)

  • Park, Sang-Jung;Chung, Young-Hee;Chung, Hyen-Mi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.531-538
    • /
    • 2007
  • The effects of temperature, coagulants and pre-chlorination on the removal of turbidity and pathogenic protozoa by coagulation process were investigated using jar test of lab scale. In room temperature ($25^{\circ}C$), protozoa were removed over 1.0log at the proper concentration range of coagulants, and up to over 2log at the optimal concentration of coagulants. Considering the 1.5log target removal for Giardiain the processes of coagulation, sedimentation, and filtration, this results implies that the target could be satisfied. However, the removal of protozoa and turbidity was reduced, and optimal PAC concentration was narrowed in low turbidity and cold temperature ($5^{\circ}C$). These results suggest that the drop of coagulation efficiency may be occurred in winter if the conditions are not optimized. Despite the effect of water temperature, the relation of turbidity and protozoa removal appeared to be good. The various kinds of coagulants did not significantly affected for removals of turbidity and protozoa when the concentrations of $Al_2O_3$ were considered. Prechlorination did not increase or decrease the removal of turbidity and protozoa in optimum condition at room temperature, pH 7, 15mg/L of PAC concentration.

Dyeing Properties and Ultraviolet-cut Ability of Dyed Fabrics with Petasites japonicus Extract (머위 추출액에 의한 직물의 염색성과 자외선 차단성)

  • Choi, In-Ryu;Joen, Mi-Sun
    • The Research Journal of the Costume Culture
    • /
    • v.19 no.1
    • /
    • pp.96-103
    • /
    • 2011
  • It is well known that the Petasites japonicus has been used for a long time medicine for the treatment of allergic diseases such as lacquer poisoning. However, the exact components and dyeing properties of its effects is still not known. Therefore, the purpose of this study was to investigate the dyeing property and ultraviolet-cut ability of silk and nylon fabrics that was dyed variously with the Petasites japonicus. The Petasites japonicus extract was done by boiling with distilled water at $100^{\circ}C$ for 1 hour. As mordanting agent, we used Aluminum potassium sulfate ($AlK(SO_4)_2{\cdot}12H_2O$), Copper(II) sulfate pentahydrate ($CuSO_5{\cdot}5H_2O$), Iron(II)Chloride ($FeCl_2{\cdot}4H_2O$). The best K/S value of dyeing temperature and time, all the fabrics were $100^{\circ}C$, 90min. Silk fabric was dyed yellow(0.8Y 7.6/2.2) and nylon fabric was dyed reddish yellow(10.1 YR 7.4/3.0). Silk fabric and nylon fabric was changed greenish yellow on mordanting with $CuSO_5{\cdot}5H_2O$ and $FeCl_2{\cdot}4H_2O$ respectively. And the colorfastness of washing and dry-cleaning was improved by using mordanting agent(4~5 grade). Ultraviolet-cut ability(UV-B) was showed more 90% in dyed nylon fabrics.

NUMERICAL STUDY OF NANOFLUIDS FORCED CONVECTION IN CIRCULAR TUBES (원형관내 나노유체의 강제대류에 관한 수치적 연구)

  • Choi, Hoon Ki;Yoo, Geun Jong
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.37-43
    • /
    • 2014
  • In this paper, hydraulic & thermal developing and fully developed laminar forced convection flow of a water-$Al_2O_3$ nanofluid in a circular horizontal tube with uniform heat flux at the wall, are investigated numerically. A single phase model employed with temperature independent properties. The thermal entrance length is presented in this paper. The variations of the convective heat transfer coefficient and shear stress are shown in the entrance region and fully developed region along different nanoparticles concentration and Reynolds numbers. Convective heat transfer coefficient for nanofluids is larger than that of the base fluid. It is shown that heat transfer is enhanced and shear stress is increased as the particle volume concentration increases. The heat transfer improves, as Reynolds number increases.

Impedance Spectroscopy Analysis of Hydration in Ordinary Portland Cements Involving Chemical Mechanical Planarization Slurry

  • Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.3
    • /
    • pp.260-265
    • /
    • 2012
  • Impedance spectroscopy was used to monitor the hydration in the electrical/dielectric behaviors of chemical mechanical planarization (CMP)-blended cement mixtures. The electrical responses were analyzed using their equivalent circuit models, leading to the separation of the bulk and electrode based responses. The role of the CMP slurry was monitored as a function of the relative compositions of the CMP-blended cements, i.e. water, CMP slurry, and ordinary Portland cement. The presence of $Al_2O_3$ nanocrystals in the CMP slurries appeared to accelerate the hydration process, along with a more tortuous microstructure in the hydration, with enhanced hydration products. The frequency-dependent impedance spectroscopy was proven to be a highly efficient approach for evaluating the electrical/dielectric monitoring of the change in the pore structure evolution that occurs in CMP-blended cements.

Effect of Synthesis Conditions on Physicochemical Properties of Zeolite SUZ-4 (합성조건이 제올라이트 SUZ-4의 물성에 미치는 영향)

  • Kim, Deok-Kyu;Kim, Young-Ho;Hwang, Young-Kyu;Chang, Jong-San;Park, Sang-Eon
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.623-628
    • /
    • 2004
  • Zeolite SUZ-4 was successfully synthesized with TEAOH (Tetraethyl ammonium hydroxide) as structure directing agent under a vigorous stirring condition. Well-defined zeolite SUZ-4 structure was only obtained under stirring of 250 rpm or more. The results imply that stirring plays a pivotal role for reproducible synthesis. Morphology of SUZ-4 crystal was controlled by adjustment of water concentrations. The physicochemical characterization of SUZ-4 and its hydrothermal stability using a steam treatment were investigated by using XRD, BET, and $NH_3-TPD$.