• Title/Summary/Keyword: Water waves

Search Result 1,228, Processing Time 0.025 seconds

Wave Force Analysis of the Three Vertical Cylinders in Water Waves

  • Kim, Nam-Hyeong;Cao, Tan Ngoc Than
    • Journal of Navigation and Port Research
    • /
    • v.32 no.7
    • /
    • pp.543-552
    • /
    • 2008
  • The diffraction of waves by three bottom fixed vertical circular cylinders is investigated by using the boundary element method. This method has been successfully applied to the isolated vertical circular cylinder and now is used to study the interaction between waves and multiple vertical cylinders. In this paper, a numerical analysis by the boundary element method is developed by the linear potential theory. The numerical analysis by the boundary element method is based on Green's second theorem and introduced to an integral equation for the fluid velocity potential around the vertical circular cylinders. To verify this method, the results obtained in present study are compared with the results computed by the multiple scattering method. The results of the comparisons show strong agreement. Also in this paper, several numerical examples are given to illustrate the effects of various parameters on the wave exciting force such are the separation distance, the wave number and the incident wave angle. This numerical computation method might be used broadly for the design of various offshore structures to be constructed in the future.

Study on Flow Characteristics in an Augmentation Channel of a Direct Drive Turbine for Wave Power Generation Using CFD

  • Prasad, Deepak;Zullah, Mohammed Asid;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.630-631
    • /
    • 2009
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Apart from wind and solar, ocean holds tremendous amount of untapped energy in forms such as geothermal vents, tides and waves. The current study looks at generating power using waves and the focus is on the primary energy conversion (first stage conversion) of incoming waves for two different models. Observation of flow characteristics, pressure and the velocity in the augmentation channel as well as the front guide nozzle are presented in the paper. A numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The augmentation channel consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. The analysis was performed using the commercial CFD code.

  • PDF

Sliding Failure of Vertical Caisson of Composite Breakwater due to Occurrence of Extreme Waves Exceeded Design Conditions (고파랑 출현에 따른 혼성제 직립 케이슨의 활동파괴)

  • Lee, Cheol-Eung
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.219-230
    • /
    • 2002
  • The sliding stability of monolithic vertical caisson of composite breakwaters is quantitatively analyzed by using a reliability model, FMA of Level II, in order to study the variation of sliding failure of caisson due to the occurrence of extreme waves exceeded deepwater design wave. The reliability index and several parameters in the wave pressure formula are inter- related to find out the effects of extreme wave exceeded design wave on the sliding failure of vertical monolithic caisson. The sliding failure of caisson seems to be largely increased as the heights and periods of extreme waves exceeded design wave increase, also depends directly on the water depth in front of the composite breakwaters. From the numerical simulations carried out with several kinds of extreme waves exceeded design wave which are assumed to be occurred during the service periods of breakwater, it is found that the effects of the wave height on the sliding failure of caisson may be more dominant than those of wave periods and angles of wave incidence.

  • PDF

Investigation of Characteristics of Waves Generated in Two-Dimensional Wave Channel (2차원 조파수조에서의 파 생성 특성 조사)

  • Ahn, Jae-Youl;Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.68-75
    • /
    • 2013
  • This paper investigates the characteristics of waves generated by a flap-type wave maker in a two-dimensional wave channel. Measurements are carried out for various water depths, wave heights, periods, and lengths capacitance-type wave height gages. The experimental results are shown to satisfy the dispersion relation of the linear wave theory. For waves with a small height and long period, the wave profiles agree well with those of the linear wave theory. However, as the wave height and period become higher and shorter, respectively, it is shown that the wave profiles measured in the present experiments are different from the linear wave profiles, and the measured wave heights are smaller than the target wave heights, which may be due to the non-linearity of the waves. As the wave progresses toward the channel end, the wave height gradually decreases. This reduction in the wave height along the wave channel is explained by the wave energy dissipation due to the friction of the side walls of the channel. The performance of the wave absorber in the channel is found to be acceptable from the results of the wave reflection tests.

The Water Wave Scattering by the Marine Structure of Arbitrary Shape (임의 형태의 해양구조물에 의한 해수파의 산란)

  • 신승호;이중우
    • Journal of the Korean Institute of Navigation
    • /
    • v.17 no.1
    • /
    • pp.61-78
    • /
    • 1993
  • Large offshore structure are to be considered for oil storage facilities , marine terminals, power plants, offshore airports, industrial complexes and recreational facilities. Some of them have already been constructed. Some of the envisioned structures will be of the artificial-island type, in which the bulk of structures may act as significant barriers to normal waves and the prediction of the wave intensity will be of importance for design of structure. The present study deals wave scattering problem combining reflection and diffraction of waves due to the shape of the impermeable rigid upright structure, subject to the excitation of a plane simple harmonic wave coming from infinity. In this study, a finite difference technique for the numerical solution is applied to the boundary integral equation obtained for wave potential. The numerical solution is verified with the analytic solution. The model is applied to various structures, such as the detached breakwater (3L${\times}$0.1L), bird-type breakwater(318L${\times}$0.17L), cylinder-type and crescent -type structure (2.89L${\times}$0.6L, 0.8L${\times}$0.26L).The result are presented in wave height amplification factors and wave height diagram. Also, the amplification factors across the structure or 1 or 2 wavelengths away from the structure are compared with each given case. From the numerical simulation for the various boundary types of structure, we could figure out the transformation pattern of waves and predict the waves and predict the wave intensity in the vicinity of large artificial structures.

  • PDF

Comparison of simulated platform dynamics in steady/dynamic winds and irregular waves for OC4 semi-submersible 5MW wind-turbine against DeepCwind model-test results

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-21
    • /
    • 2016
  • The global performance of the 5 MW OC4 semisubmersible floating wind turbine in random waves with or without steady/dynamic winds is numerically simulated by using the turbine-floater-mooring fully coupled dynamic analysis program FAST-CHARM3D in time domain. The numerical simulations are based on the complete second-order diffraction/radiation potential formulations along with nonlinear viscous-drag force estimations at the body's instantaneous position. The sensitivity of hull motions and mooring dynamics with varying wave-kinematics extrapolation methods above MWL(mean-water level) and column drag coefficients is investigated. The effects of steady and dynamic winds are also illustrated. When dynamic wind is added to the irregular waves, it additionally introduces low-frequency wind loading and aerodynamic damping. The numerically simulated results for the 5 MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model-test results by Technip/NREL/UMaine. Those numerical-simulation results have good correlation with experimental results for all the cases considered.

DSP Implementation of QPSK Signal Generator for Underwater Supersonic Waves Communication (수중 초음파 통신을 위한 QPSK 신호발생기의 DSP 구현에 관한 연구)

  • Lee, Deok-Hwan;Ji, Yong-Il;Kim, Seung-Geun;Lim, Yong-Gon;Ko, Hak-Lim
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.341-344
    • /
    • 2003
  • There communicates using tire supersonic waves in tire underwater, that is different from tire ground that use tire propagation. Because using Law frequency to come under tire waves, bandwidth that is able to communicate is very smaller that tire mobile communication of tire ground. Also, The channel environment changes rapidly in tire shallow underwater than tire ground. Due to such a reason, data transmission technic that is able to tire maximum application to restricted bandwidth and tire signal processing technics that is able to conquer tire rapid changes of tire channel environment are being used. Algorithm is used at tire application of these technic has a lot of tire calculating quantity. So this research reveals small bulk and equal performance using one DSP chip and then implements QPSK transmitter, that uses SHARC DSP of Analog Device company, for tire underwater supersonic waves communication rapidly decrease tire calculating quantity.

  • PDF

Analysis of Stem Wave due to Long Breakwaters at the Entrance Channel

  • Kwon, Seong-Min;Moon, Seung-Hyo;Lee, Sang-Heon;Yoo, Jae-Woong;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.345-352
    • /
    • 2017
  • Recently, a new port reserves deep water depth for safe navigation and mooring, following the trend of larger ship building. Larger port facilities include long and huge breakwaters, and mainly adopt vertical type considering low construction cost. A vertical breakwater creates stem waves combining inclined incident waves and reflected waves, and this causes maneuvering difficulty to the passing vessels, and erosion of shoreline with additional damages to berthing facilities. Thus, in this study, the researchers have investigated the response of stem waves at the vertical breakwater near the entrance channel and applied numerical models, which are commonly used for the analysis of wave response at the harbor design. The basic equation composing models here adopted both the linear parabolic approximation adding the nonlinear dispersion relationship and nonlinear parabolic approximation adding a linear dispersion relationship. To analyze the applicability of both models, the research compared the numerical results with the existing hydraulic model results. The gap of serial breakwaters and aligned angles caused more complicated stem wave generation and secondary stem wave was found through the breakwater gap. Those analyzed results should be applied to ship handling simulation studies at the approaching channels, along with the mooring test.

Effects of Electromagnetic Radiation Exposure on Stress-Related Behaviors and Stress Hormones in Male Wistar Rats

  • Mahdavi, Seyed Mohammad;Sahraei, Hedayat;Yaghmaei, Parichehreh;Tavakoli, Hassan
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.570-576
    • /
    • 2014
  • Studies have demonstrated that electromagnetic waves, as the one of the most important physical factors, may alter cognitive and non-cognitive behaviors, depending on the frequency and energy. Moreover, non-ionizing radiation of low energy waves e.g. very low frequency waves could alter this phenomenon via alterations in neurotransmitters and neurohormones. In this study, short, medium, and long-term exposure to the extremely low frequency electromagnetic field (ELF-EMF) (1 and 5 Hz radiation) on behavioral, hormonal, and metabolic changes in male Wistar rats (250 g) were studied. In addition, changes in plasma concentrations for two main stress hormones, noradrenaline and adrenocorticotropic hormone (ACTH) were evaluated. ELF-EMF exposure did not alter body weight, and food and water intake. Plasma glucose level was increased and decreased in the groups which exposed to the 5 and 1Hz wave, respectively. Plasma ACTH concentration increased in both using frequencies, whereas noradrenaline concentration showed overall reduction. At last, numbers of rearing, sniffing, locomotor activity was increased in group receiving 5 Hz wave over the time. In conclusions, these data showed that the effects of 1 and 5 Hz on the hormonal, metabolic and stress-like behaviors may be different. Moreover, the influence of waves on stress system is depending on time of exposure.

An Experimental Study on the Motion Response of a High-Speed Planing Craft in Regular Head Waves (정면 규칙파 중 활주형 고속선의 운동 응답에 대한 실험적 연구)

  • Kim, Dong-Jin;Rhee, Key-Pyo;Hwang, Seung-Hyun;Park, Han-Sol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.4
    • /
    • pp.373-381
    • /
    • 2009
  • The running attitude of a high-speed planing craft may change significantly depending on its speed in seaway. Other variables that may influence its running attitude are its weight, center of gravity, sea conditions, and so on. In this paper, planing craft model tests were carried out with respect to above variables in SNU towing tank, and vertical motion responses of a planing craft in regular head waves were analyzed. The experimental results in regular waves were compared with those in calm water, and compared with the theoretical estimations. Finally, the effects of running speeds of a planing craft on its motion amplitudes are confirmed.