• Title/Summary/Keyword: Water waves

Search Result 1,228, Processing Time 0.026 seconds

A study on Monitoring the Inner Structure of Dam Body Using High Resolution Seismic Reflection Method (고분해능 탄성파 반사법을 이용한 댐체 내부구조 모니터링 연구)

  • Kim, Jung-Yul;Kim, Hyoung-Soo;Oh, Seok-Hoon;Kim, Yoo-Sung
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Defects of dam body which can be induced in seepage or leakage procedure can directly affect dam safety. Therefore, a proper inspection method should be carried out in the first place to find out their positions and sizes. After that, some reinforcement works such as grouting and the corresponding assessment could be taken in a proper way. The dam(center core type earth dam) issued in this study has been in need for intensive diagnosis and reinforcement work, because a lot of slumps similar to cracks, seepage and some boggy area have been observed on the downstream slope. High resolution seismic reflection method was performed on the crest profile twice before and after grouting work(Aug. 2001 and Nov. 2004) aimed at the dam inspection and the assessment of grouting efficiency as well. To enhance the data resolution, P-beam energy radiation technique which can reduce the surface waves and hence to reinforce the reflection events was used. Strong reflection events were recognized in the stack section before grouting work, It seems that the events would be caused by e.g. horizontal cracks with a considerable aperture. Meanwhile such strong reflection events were not observed in the section after grouting. That is, the grouting work was dear able to reinforce the defects of dam body. Hence, the section showed an well arranged picture of dam inner structure. In this sense, seismic reflection method will be a desirable technique for dam inspection and for monitoring dam inner structure as well.

  • PDF

Development of Ocean Data Buoy and Real-Time Monitoring Technology (종합관측부이 개발 및 실시간 관측기술)

  • 심재설;이동영;박우선;박광순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.56-67
    • /
    • 1999
  • It is desired to use a domestically manufactured ocean data buoy for the long-term operational ocean monitoring. The ocean data buoy manufacturing technology was introduced through the research cooperation with the Qingkong University of Taiwan. The introduced ocean data buoy system was further expanded and improved for more efficient application for the marine environmental monitoring in Korea. The size of the ocean data buoy is 2.5 m in diameter, which is smaller compared to the NOAA's 3.0 m discus buoy to allow easy land transportation and ocean deployment as well. From the dynamic response test of the buoy carried out numerically, it was shown that the measurement of waves with period greater than 4 seconds is acceptable. The measurement and control system of the data buoy were improved to increase the number of measuring parameters, to reduce power consumption and to enhance better data analysis and management. Each component of the improved data buoy system was described in detail in this paper. Water quality sensors of water temperature, salinity, DO, pH and turbidity were added to the system in addition to the marine meteorological sensors of wind speed and direction, air temperature, humidity, air pressure and wave. Inmarsat satellite communication system is used for the real-time data telemetry from the buoy deployed offshore. A field performance test of the improved and domestically manufactured buoy was carried out for a month at the open sea off Pohang together with DatawelI's Wave-rider buoy to compare the wave data. The results of the test were satisfactory.

  • PDF

Behavioral analysis of Pacific cod (Gadus macrocephalus) released to the entrance of Jinhae Bay, Korea (진해만 입구에 방류한 대구(Gadus macrocephalus)의 행동 분석)

  • SHIN, Hyeon-Ok;HEO, Gyeom;HEO, Min-A;KANG, Kyoungmi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.1
    • /
    • pp.29-38
    • /
    • 2019
  • In order to investigate the behavioral characteristics of Pacific cod (Gadus macrocephalus) released at the entrance of Jinhae Bay, Korea, the direction and range of movement, swimming speed of the fish were measured with an acoustic telemetry techniques in winter, 2015. Three wild Pacific codes WC1 to WC3 (total length 66.0, 75.0, 76.0 cm; body weight 2.84, 2.79, 3.47 kg, respectively) were tagged with the acoustic transmitter. WC1 tagged with an acoustic transmitter internally by surgical method, WC2 and WC3, externally with the acoustic data logger and a micro data logger for recording audible sound waves including timer release unit. The movement routes of the tagged fish were measured more than five hours using VR100 receiver and a directional hydrophone. The directionality of the fish movement was tested by Rayleigh's z-Test, the statistical analysis, and a statistical program SPSS. Three tagged fishes were individually released on the sea surface around the entrance to the Jinhae Bay on 10 to 24 January 2015. WC1 moved about 13.32 km with average swimming speed of 0.63 m/s for six hours. The average swimming depth and water depth of the seabed on the route of WC1 were 7.2 and 32.9 m, respectively. The movement range of WC2 and WC3 were 7.95 and 11.06 km, approximately, with average swimming speed of 0.44 and 0.58 m/s for 5.1 and 5.3 hours, respectively. The average swimming depth of WC2 and WC3 were 18.7 and 5.0 m, and the water depth on the route, 34.4 and 29.8 m, respectively. Three fishes WC1 to WC3 were shown significant directionality in the movement (p < 0.05). Movement mean angles of WC1 to WC3 were 77.7, 76.3 and $88.1^{\circ}$, respectively. There was no significant correlation between the movement direction of fish (WC1 and WC2) and the tidal currents during the experimental period (p >= 0.05). Consequently, three tagged fishes were commonly moved toward outside of the entrance and headed for eastward of the Korean Peninsula, approximately, after release. It may estimate positively that the tidal current speed may affect to the swimming speed of the Pacific cod during the spring tide than the neap tide.

Assessment of the Structural Collapse Behavior of Between Offshore Supply Vessel and Leg in the Jack-up Drilling Rig (잭업드릴링 리그의 레그와 작업 지원선 충돌에 의한 구조붕괴 거동 평가)

  • Park, Joo-Shin;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.601-609
    • /
    • 2022
  • Jack-up drilling rigs are mobile offshore platforms widely used in the offshore oil and gas exploration industry. These are independent, three-legged, self-elevating units with a cantilevered drilling facility for drilling and production. A typical jack-up rig includes a triangular hull, a tower derrick, a cantilever, a jackcase, living quarters and legs which comprise three-chord, open-truss, X-braced structure with a spudcan. Generally, jack-up rigs can only operate in water depths ranging from 130m to 170m. Recently, there has been an increasing demand for jack-up rigs for operating at deeper water levels and harsher environmental conditions such as waves, currents and wind loads. All static and dynamic loads are supported through legs in the jack-up mode. The most important issue by society is to secure the safety of the leg structure against collision that causes large instantaneous impact energy. In this study, nonlinear FE -analysis and verification of the requirement against collision for 35MJ recommended by DNV was performed using LS-Dyna software. The colliding ship used a 7,500ton of shore supply vessel, and five scenarios of collisions were selected. From the results, all conditions do not satisfy the class requirement of 35MJ. The loading conditions associated with chord collision are reasonable collision energy of 15M and brace collisions are 6MJ. Therefore, it can be confirmed that the identical collision criteria by DNV need to be modified based on collision scenarios and colliding members.

Characteristics of Wave Pressures According to the Installation Location of the Caisson Superstructure under Regular Waves (규칙파 조건에서 케이슨 상치구조물의 설치위치에 따른 파압 특성)

  • Jun, Jae-Hyung;Lee, Suk-Chan;Kim, Do-Sam;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.3
    • /
    • pp.82-92
    • /
    • 2022
  • In recent years, coastal and port structures have attempted to prevent wave-overtopping or provide waterfront areas by installing superstructures on the structural crowns. In general, in the design stage, the Goda formula acting on the front the structure is applied to calculate the wave pressure acting on the superstructure in consideration of the wave-runup of the design wave. However, the wave pressure exceeding the Goda wave pressure could generate depending on the installation location of the superstructure where the wave-overtopping occurs. This study analyzed the applicability of the Goda formula to the wave pressure calculation for the superstructure of the vertical structures through hydraulic model experiments and numerical simulations. Furthermore, this study investigated the magnitude of the wave pressure acting on the superstructure based on detailed numerical results. As a result, the wave pressure acting on the superstructure was up to 120% higher than the maximum wave pressure on the still water surface. In addition, the wave pressure increases exponentially with the Froude number computed by the overtopping water depth at the crown of the structure, and we proposed an empirical formula for predicting the wave pressure based on the Froude number.

Current and Long Wave Influenced Plume Rise and Initial Dilution Determination for Ocean Outfall (해양 배출구에서 해류와 장파에 의한 플룸 상승과 초기 희석도 결정)

  • Kwon, S.J.
    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.231-240
    • /
    • 1997
  • In the United States, a number of ocean outfalls discharge primary treated effluent into deep sea water and contribute for more efficient wastewater treatment. The long multiport diffuser connected by long pipe from a treatment plant discharge wastewater into deep water due to the steep slope of the sea bed. However, Plume discharged from the diffuser can have significant impacts on coastal communities and possibly immediate consequence on public health. Therefore, there have been growing interests about the dynamics of plume in the vicinity of the ocean outfalls. It is expected that the ocean outfall should be considered for more efficient and reliable wastewater treatments as soon as possible around coastal area in South Korea. A number of studies of plume ynamics have used various models to predict plume behavior. However, in many cases, the calculated values of plume behavior are in significantly poor agreement with realistic values. Therefore, in this study, it is recommended that improvements should be made in the application of the plume model to more simulate the actual discharge characteristics and ocean conditions. It should be noted that input parameters in plume models reflect realistic ocean conditions like waves as well as currents. In this study, as one of the new parameters, current and long wave-influenced plume rise and initial dilution have been taken into account by using simple linear wave theory under some specific assumptions for more reliable plume behavior description. Among the improved plume models approved by EPA (Environmental Protection Agency), the RSB(Roberts-Snyder-Baurngartner) and UM(Updated Merge) models were chosen for the calculation of plume behavior, and the variation calculated by both models on the basis of long period wave was compared in terms of plume rise and initial dilution.

  • PDF

Numerical Simulation of Nonlinear Interaction between Composite Breakwater and Seabed under Irregular Wave Action by olaFlow Model (olaFlow 모델에 의한 불규칙파 작용하 혼성방파제-해저지반의 비선형상호작용에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Jung, Uk Jin;Choi, Goon-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.129-145
    • /
    • 2019
  • For the design of composite breakwater as representative one of the coastal and harbor structures, it has been widely discussed by the researchers about the relation between the behavior of excess-pore-water pressure inside the rubble mound and seabed caused by the wave load and its structural failure. Recently, the researchers have tried to verify its relation through the numerical simulation technique. The above researches through numerical simulation have been mostly applied by the linear and nonlinear analytic methods, but there have been no researches through the numerical simulation by the strongly nonlinear mutiphase flow analytical method considering wave-breaking phenomena by VOF method and turbulence model by LES method yet. In the preceding research of this study, olaFlow model based on the mutiphase flow analytical method was applied to the nonlinear interaction analysis of regular wave-composite breakwater-seabed. Also, the same numerical techniques as preceding research are utilized for the analysis of irregular wave-composite breakwater-seabed in this study. Through this paper, it is investigated about the horizontal wave pressures, the time variations of excess-pore-water pressure and their frequency spectra, mean flow velocities, mean vorticities, mean turbulent kinetic energies and etc. around the caisson, rubble mound of the composite breakwater and seabed according to the changes of significant wave height and period. From these results, it was found that maximum nondimensional excess-pore water pressure, mean turbulent kinetic energy and mean vorticity come to be large equally on the horizontal plane in front of rubble mound, circulation of inflow around still water level and outflow around seabed is formed in front of rubble caisson.

Evaluation of the Shear Strength and Stiffness of Frozen Soil with a Low Water Content (함수비가 낮은 동결토의 전단강도 및 강성 평가)

  • Kim, Sang Yeob;Lee, Jong-Sub;Kim, Young Seok;Byun, Yong-Hoon
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2015
  • The characteristics of frozen soils are one of most important factors for foundation design in cold region. The objective of this study is to evaluate the shear strength and stiffness of frozen soils according to the confining conditions during the freezing and shearing phase. A direct shear box is constructed for the frozen specimens and bender elements are mounted on the wall of the shear box to measure shear wave velocities. Specimens are prepared by mixing sand and silt with a silt fraction of 30% in weight and the degree of saturation of 10%, giving a relative density of 60% for all tests. The temperature of the specimens in the freezer is allowed to fall below -5℃, and then direct shear tests are performed. A series of vertical stresses are applied during the freezing and shearing phase. Shear stress, vertical displacement, and shear wave along the horizontal displacement are measured. Experimental results show that in all the tests, shear strength increases with increasing vertical stress applied during the freezing and shearing phases. The magnitude of the increase in shear strength with increasing vertical stress during shearing under fixed vertical stress in the frozen state is smaller than the magnitude of the increase in vertical stress during freezing and shearing. In addition, the change in shear wave velocities varies with the position of the bender elements. In the case of shear waves passing through the shear plane, the shear wave velocities decrease with increasing horizontal displacement. This study provides an evaluation of the properties of shear strength and stiffness of frozen soils under varied confining condition.

Role of Catecholamines in Ventricular Fibrillation (Catecholamines에 관(關)하여 -제4편(第四編) : 심실전동발생(心室顫動發生)에 있어서의 catecholamines의 의의(意義)-)

  • Lee, Woo-Choo
    • The Korean Journal of Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.15-35
    • /
    • 1983
  • Although it has been well known that ventricular fibrillation is the most important complication during hypothermia, much investigation has failed to show the exact nature of the etiology of ventricular fibrillation. Recently, there has been considerable research on the relationship between sympathetic activity and ventricular fibrillation under hypothermia. Cardiac muscle normally contains a certain amount of norepinephrine and the dramatic effect of this catecholamines on the cardiac muscle is well documented. It is, therefore, conceivable that cardiac catecholamines might exert an influence on the susceptibility of heart muscle to tachycardia, ventricular fibrillation and arrhythmia, under hypothermia. Hypothermia itself is stress enough to increase tonus of sympatheticoadrenal system. The normal heart is supplied by an autonomic innervation and is subjected to action of circulating catecholamines which may be released from the heart. If the reaction of the heart associated with a variable amount of cardiac catecholamines is. permitted to occur in the induction of hypothermia, the action of this agent on the heart has not to be differentiated from the direct effects of cooling. The studies presented in this paper were designed to provide further information about the cardio-physiological effects of reduced body temperature, with special reference to the role of catecholamines in ventricular fibrillation. Healthy cats, weighing about 3 kg, were anesthetized with pentobarbital(30 mg/kg) intraperitoneally. The trachea was intubated and the endotracheal tube was connected to a C.F. Palmer type A.C. respirator. Hypothermia was induced by immersing the cat into a ice water tub and the rate of body temperature lowering was $1^{\circ}C$ per 5 to 8 min. Esophageal temperature and ECG (Lead II) were simultaneously monitored. In some cases the blood pH and serum sodium and potassium were estimated before the experiment. After the experiment the animals were killed and the hearts were excised. The catecholamines content of the cardiac muscle was measured by the method of Shore and Olin (1958). The results obtained are summarized as follows. 1) In control animal the heart rate was slowed as the temperature fell and the average pulse rates of eight animals were read 94/min at $31^{\circ}C$, 70/min at $27^{\circ}C$ and 43/min at $23^{\circ}C$ if esophageal temperature. Ventricular fibrillation was occurred with no exception at a mean temperature of $20.3^{\circ}C(21-l9^{\circ}C)$. The electrocardiogram revealed abnormal P waves in each progressive cooling of the heart. there was, ultimately, a marked delay in the P-R interval, QRS complex and Q-T interval. Inversion of the T waves was characteristic of all animals. The catecholamines content of the heart muscle excised immediately after the occurrence of ventricular fibrillation was about thirty percent lower than that of the pre-hypothermic heart, that is, $1.0\;{\mu}g/g$ wet weight compared to the prehypothermic value of $1.41\;{\mu}g/g$ wet weight. The changes of blood pH, serum sodium and potassium concentration were not remarkable. 2) By the adrenergic receptor blocking agent, DCI(2-3 mg/kg), given intramuscularly thirty minutes before hypothermia, ventricular fibrillation did not occur in one of five animals when their body temperature was reduced even to $16^{\circ}C$. These animals succumbed at that low temperature, and the changes of heart rate and loss of myocardial catecholamines after hypothermia were similar to those of normal animals. The actual effect of DCI preventing the ventricular fibrillation is not predictable. 3) Administration of reserpine(1 mg/kg, i.m.) 24 hours Prior to hypothermia disclosed reduced incidence of ventricular fibrillation, that is, six of the nine animals went into fibrillation at an average temperature of $19.6^{\circ}C$. By reserpine myocardial catecholamines content dropped to $0.045\;{\mu}g/g$ wet weight. 4) Bretylium pretreatment(20 mg/kg, i.m.), which blocks the release of catecholamines, Prevented the ventricular fibrillation under hypothermia in four of the eight cats. The pulse rate, however, was approximately the same as control and in some cases was rather slower. 5) Six cats treated with norepinephrine(2 mg/kg, i.m.) or DOPA(50 mg/kg) and tranylcypromine(10 mg/kg), which tab teen proved to cause significant increase in the catecholamines content of the heart muscle, showed ventricular fibrillation in all animals under hypothermia at average temperature of $21.6^{\circ}C$ and the pulse rate increased remarkably as compared with that of normal. Catecholamines content of cardiac muscle of these animals markedly decreased after hypothermia but higher than control animals. 6) The functional refractory periods of isolated rabbit atria, determined by the paired stimulus technique, was markedly shortened by administration of epinephrine, norepinephrine and isoproterenol. 7) Adrenergic beta-blocking agents, such as pronethalol, propranolol and sotalol(MJ-1999), inhibited completely the shortening of refractory period induced by norepinephrine. 8) Pretreatment with either phenoxftenbamine or phentolamine, an adrenergic alphatlocking agent, did not modify the decrease in refractory period induced by norepinephrine. From the above experiment it is possible to conclude that catecholamines play an important role in producing ventricular fibrillation under hypothermia. The shortening of the refractorf period of cardiac muscle induced by catecholamines mar be considered as a partial factor in producing ventriculr fibrillaton and to be mediated by beta-adrenergic receptor.

  • PDF

Analysis on dynamic numerical model of subsea railway tunnel considering various ground and seismic conditions (다양한 지반 및 지진하중 조건을 고려한 해저철도 터널의 동적 수치모델 분석)

  • Changwon Kwak;Jeongjun Park;Mintaek Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.583-603
    • /
    • 2023
  • Recently, the advancement of mechanical tunnel boring machine (TBM) technology and the characteristics of subsea railway tunnels subjected to hydrostatic pressure have led to the widespread application of shield TBM methods in the design and construction of subsea railway tunnels. Subsea railway tunnels are exposed in a constant pore water pressure and are influenced by the amplification of seismic waves during earthquake. In particular, seismic loads acting on subsea railway tunnels under various ground conditions such as soft ground, soft soil-rock composite ground, and fractured zones can cause significant changes in tunnel displacement and stress, thereby affecting tunnel safety. Additionally, the dynamic response of the ground and tunnel varies based on seismic load parameters such as frequency characteristics, seismic waveform, and peak acceleration, adding complexity to the behavior of the ground-tunnel structure system. In this study, a finite difference method is employed to model the entire ground-tunnel structure system, considering hydrostatic pressure, for the investigation of dynamic behavior of subsea railway tunnel during earthquake. Since the key factors influencing the dynamic behavior during seismic events are ground conditions and seismic waves, six analysis cases are established based on virtual ground conditions: Case-1 with weathered soil, Case-2 with hard rock, Case-3 with a composite ground of soil and hard rock in the tunnel longitudinal direction, Case-4 with the tunnel passing through a narrow fault zone, Case-5 with a composite ground of soft soil and hard rock in the tunnel longitudinal direction, and Case-6 with the tunnel passing through a wide fractured zone. As a result, horizontal displacements due to earthquakes tend to increase with an increase in ground stiffness, however, the displacements tend to be restrained due to the confining effects of the ground and the rigid shield segments. On the contrary, peak compressive stress of segment significantly increases with weaker ground stiffness and the effects of displacement restrain contribute the increase of peak compressive stress of segment.