• Title/Summary/Keyword: Water wall

Search Result 1,660, Processing Time 0.025 seconds

On Vortex Reduction Characteristics of Pump Sump Circulating Water Intake Basin of Power Plant Using Hydraulic Experiment (수리실험을 이용한 발전소의 순환수 취수부 흡입수조의 와류저감에 관한 연구)

  • Eom, Junghyun;Lee, Du Han;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.815-824
    • /
    • 2022
  • Among the main facilities of the power plant, the circulating water used for cooling the power generation system is supplied through the Circulation Water Intake Basin (CWIB). The vortexes of various types generated in the Pump Sump (PS) of CWIB adversely affect the Circulation Water Pump (CWP) and pipelines. In particular, the free surface vortex accompanied by air intake brings about vibration, noise, cavitation etc. and these are the causes of degradation of CWP performance, damage to pipelines. Then power generation is interrupted by the causes. Therefore, it is necessary to investigate the hydraulic characteristics of CWIB through the hydraulic model experiment and apply an appropriate Anti Vortex Device (AVD) that can control the vortex to enable smooth operation of the power plant. In general, free surface vortex is controlled by Curtain Wall (CW) and the submerged vortex is by the anti vortex device of the curtain wall. The detailed specifications are described in the American National Standard for Pump Intake Design. In this study, the circulating water intake part of the Tripoli West 4×350 MW power plant in Libya was targeted, the actual operating conditions were applied, and the vortex reduction effect of the anti vortex device generated in the suction tank among the circulating water intake part was analyzed through a hydraulic model experiment. In addition, a floor splitter was basically applied to control the submerged vortex, and a new type of column curtain wall was additionally applied to control the vortex generated on the free surface to confirm the effect. As a result of analyzing the hydraulic characteristics by additionally applying the newly developed Column Curtain Wall (CCW) to the existing curtain wall, we have found that the vortex was controlled by forming a uniform flow. In addition, the vortex angle generated in the circulating water pump pipeline was 5° or less, which is the design standard of ANSI/HI 9.8, confirming the stability of the flow.

Numerical Analysis of Freezing Phenomena of Water in a U-Type Tube (U자형 배관 내 결빙에 대한 해석적 연구)

  • Park, Yong-Seok;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.52-58
    • /
    • 2019
  • This study numerically analyzed the icing process in a U-shaped pipe exposed to the outside by considering the mushy zone of freezing water. Numerical results showed that the flow was pulled outward due to the U-shaped bend in the freezing section exposed to the outside, which resulted in the ice wave formation on the wall of the bended pipe behind. At the same time, the formation of a corrugated ice layer became apparent due to the venturi effect caused by the ice. The factors affecting the freezing were investigated, including the change of the pipe wall temperature, the water inflow velocity, and the pipe bend spacing. It was found that, as a whole, the thickness of the freezing layer increased as the pipe wall temperature decreased. It was also found that the freezing layer became relatively thin when the inflow rate of water was increased, and that the spacing of the pipe bends did not significantly impact the change in the freezing layer.

Characteristics of Water Soluble Fractions of Wheat Bran Treated with Various Thermal Processes (열처리 밀기울의 수용성 분획의 특징)

  • Hwang, Jae-Kwan;Kim, Chong-Tai;Cho, Sung-Ja;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.934-938
    • /
    • 1995
  • Water soluble fractions (WSF) of wheat bran treated with thermal processes such as autoclaving, microwaving and extrusion were characterized to investigate the structural response of plant cell wall to thermal and mechanical energy. From the chemical analysis and gel filtration chromatography of WSF, gelatinization of starch was found to be the primary solubilizing mechanism of wheat bran, followed by the structural disintegration of fibrous non-starch cell wall materials. It was also found that extrusion process resulted in degrading relatively higher molecular weight non-starch polysaccharides from the cell wall. GC analysis of water soluble non-starch polysaccharides indicates that the arabinoxylan residues of cell wall are the most susceptible site to thermal treatments studied. In particular, the degrading degree of cell wall of wheat bran is the most significant for extrusion accompanying both high temperature and high shear.

  • PDF

Failure Analysis of Condenser Fin Tubes of Package Type Air Conditioner for Navy Vessel (함정용 패키지 에어콘 응축기 핀튜브(Cu-Ni 70/30) 누설파괴 원인 분석)

  • Park, Hyoung Hun;Hwang, Yang Jin;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.439-446
    • /
    • 2016
  • In 2015, a fin tube (Cu-Ni 70/30 alloy) of package type heat exchanger for navy vessel was perforated through the wall which led to refrigerant leakage. This failure occurred after only one year since its installation. In this study, cause of the failure was determined based on available documents, metallographic studies and computational fluid dynamics simulation conducted on this fin tube. The results showed that dimensional gap between inserted plastic tube and inside wall of fin tube is the cause of the swirling turbulent stream of sea water. As a result of combination of swirling turbulence and continuing collision of hard solid particles in sea water, erosion corrosion has begun at the end of inserted plastic tube area. Crevice corrosion followed later in the crevice between the outer wall of plastic tube and inner wall of fin tube. It was found that other remaining tubes also showed the same corrosion phenomena. Thorough inspection and prompt replacement will have to be accomplished for the fin tubes of the same model heat exchanger.

NUMERICAL SIMULATION OF SCOUR BY A WALL JET

  • A.A.Salehi Neyshabouri;R.Barron;A.M.Ferreira da Silva
    • Water Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.179-185
    • /
    • 2001
  • The time consuming and expensive nature of experimental research on scouring processes caused by flowing water makes it attractive to develop numerical tools for the predication of the interaction of the fluid flow and the movable bed. In this paper the numerical simulation of scour by a wall jet is presented. The flow is assumed to be two-dimensional, and the alluvium is cohesionless. The solution process, repeated at each time step, involves simulation of a turbulent wall jet flow, solution of the convection-diffusion of sand concentration, and prediction of the bed deformation. For simulation of the jet flow, the governing equations for momentum, mass balance and turbulent parameters are solved by the finite volume method. The SIMPLE scheme with momentum interpolation is used for pressure correction. The convection-diffusion equation is solved for sediment concentration. A boundary condition for concentration at the bed, which takes into account the effect of bed-load, is implemented. The time rate of deposition and scour at the bed is obtained by solving the continuity equation for sediment. The shape and position of the scour hole and deposition of the bed material downstream of the hole appear realistic.

  • PDF

Estimation of Maximum Member Force in Basement Wall according to Stiffness and Aspect Ratios of Wall and Column (벽체와 기둥의 강성비와 형상비에 따른 지하외벽의 최대부재력 산정)

  • Young-Chan Kim;Dong-Gun Kim
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.118-122
    • /
    • 2002
  • A numerical study using linear finite element analysis is performed to investigate the behavior of basement wall subject to soil and water pressure. Currently, structural design of basement wall is based on the assumption for boundary condition of plate, which may lead to the erroneous results. In this study, parametric studies are performed to investigate the variation of moment and shear force according to column-to-wall stiffness ratios and aspect ratios. Scaled factors applicable to the design of basement wall are proposed with the illustration of desist examples.

Influence of Local Ultrasonic Forcing on a Turbulent Boundary layer (국소적 초음파 가진이 난류경계층에 미치는 영향)

  • Park, Young-Soo;Sung, Hyung-Jin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.17-22
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. Stereoscopic particle image velocimetry (SPIV) was used to probe the characteristics of the flow. A ultrasonic forcing system was made by adhering six ultrasonic transducers to the local flat plate. Cavitation which generates uncountable minute air-bubbles having fast wall normal velocity occurs when ultrasonic was projected into water. The SPIV results showed that the wall normal mean velocity is increased in a boundary layer dramatically and the streamwise mean velocity is reduced. The skin friction coefficient ($C_{f}$) decreases $60\%$ and gradually recovers at the downstream. The ultrasonic forcing reduces wall-region streamwise turbulent intensity, however, streamwise turbulent intensity is increased away from the wall. Wall-normal turbulent intensity is almost the same near the wall but it increases away from the wall, In tile vicinity of the wall, Reynold shear stress, sweep strength and production of turbulent kinetic energy were decreased. This suggests that the streamwise vortical structures are lifted by ultrasonic forcing and then skin friction is reduced.

  • PDF

An investigation on the effect of the wall treatments in RANS simulations of model and full-scale marine propeller flows

  • Choi, Jung-Kyu;Kim, Hyoung-Tae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.967-987
    • /
    • 2020
  • A numerical analysis is carried out for the marine propellers in open water conditions to investigate the effect of the wall treatments in model and full scale. The standard wall function to apply the low of the wall and the two layer zonal model to calculate the whole boundary layer for a transition phenomenon are used with one turbulence model. To determine an appropriate distance of the first grid point from the wall when using the wall function, a formula based on Reynolds number is suggested, which can estimate the maximum y+ satisfying the logarithmic law. In the model scale, it is confirmed that a transition calculation is required for a model scale propeller with low Reynolds number that the transient region appears widely. While in the full scale, the wall function calculation is recommended for efficient calculations due to the turbulence dominant flow for large Reynolds number.

NEAL-WALL GRID DEPENDENCY OF CFD SIMULATION FOR A SUBCOOLED BOILING FLOW (과냉 비등유동에 대한 CFD 모의 계산에서의 벽 인접격자 영향)

  • In, W.K.;Shin, C.H.;Chun, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.320-325
    • /
    • 2010
  • A multiphase CFD analysis is performed to investigate the effect of near-wall grid for simulating a subcooled boiling flow in vertical tube. The multiphase flow model used in this CFD analysis is the two-fluid model in which liquid(water) and vapor(steam) are considered as continuous and dispersed fluids, respectively. A wall boiling model is also used to simulate the subcooled boiling heat transfer at the heated wall boundary. The diameter and heated length of tube are 0.0154 m and 2 m, respectively. The system pressure in tube is 4.5 MPa and the inlet subcooling is 60 K. The near-wall grid size in the non-dimensional wall unit ($y_{w}^{+}$) was examined from 64 to 172 at the outlet boundary. The CFD calculations predicted the void distributions as well as the liquid and wall temperatures in tube. The predicted axial variations of the void fraction and the wall temperature are compared with the measured ones. The CFD prediction of the wall temperature is shown to slightly depend on the near-wall grid size but the axial void prediction has somewhat large dependency. The CFD prediction was found to show a better agreement with the measured one for the large near-wall grid, e.g., $y_{w}^{+}$ > 100.

  • PDF

NEAR-WALL GRID DEPENDENCY OF CFD SIMULATION FOR A SUBCOOLED BOILING FLOW USING WALL BOILING MODEL (벽 비등모델을 이용한 과냉비등 유동에 대한 CFD 모의계산에서 벽 인접격자의 영향)

  • In, W.K.;Shin, C.H.;Chun, T.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.24-31
    • /
    • 2010
  • boiling flow in vertical tube. The multiphase flow model used in this CFD analysis is the two-fluid model in which liquid(water) and gas(vapour) are considered as continuous and dispersed fluids, respectively. A wall boiling model is also used to simulate the subcooled boiling heat transfer at the heated wall boundary. The diameter and heated length of tube are 0.0154 m and 2 m, respectively. The system pressure in tube is 4.5 MPa and the inlet subcooling is 60 K. The near-wall grid size in the non-dimensional wall unit for lqiuid phase ($y^+_{w,l}$) was examined from 101 to 313 at the outlet boundary. The CFD calculations predicted the void distributions as well as the liquid and wall temperatures in tube. The predicted axial variations of the void fraction and the wall temperature are compared with the measured ones. The CFD prediction of the wall temperature is shown to slightly depend on the near-wall grid size but the axial void prediction has somewhat large dependency. The CFD prediction was found to show a better agreement with the measured one for the large near-wall grid, e.g., $y^+_{w,l}$ > 300 at the tube exit.