• Title/Summary/Keyword: Water vapour

Search Result 110, Processing Time 0.024 seconds

Desalination of geothermal water by membrane distillation

  • Gryta, M.;Palczynski, M.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.147-158
    • /
    • 2011
  • Membrane distillation process was used for desalination of hot (333 K) geothermal water, which was applied in the plant producing heating water. The investigated water contained 120 g salts/$dm^3$, mainly NaCl. The mineral composition was studied using an ion chromatography method. The obtained rejection of solutes was closed to 100%, but the small amounts of $NH_3$ also diffused through the membrane together with water vapour. However, the composition of obtained distillate allowed to use it as a makeup water in the heating water system. The geothermal water under study was concentrated from 120 to 286 g NaCl/$dm^3$. This increase in the solution concentration caused the permeate flux decline by a 10-20%. The geothermal water contained sulphates, which was subjected to two-fold concentration to achieve the concentration 2.4-2.6 g $SO{_4}{^{2-}}/dm^3$ and the sulphates then crystallized in the form of calcium sulphate. As a results, an intensive membranes scaling and the permeate flux decline was observed. The XRD analysis indicated that beside the gypsum also the NaCl crystallites were deposited on the membrane surfaces. The fresh geothermal water dissolved the mixed $CaSO_4$ and NaCl deposit from the membrane surface. This property can be utilized for self-cleaning of MD modules. Using a batch feeding of MD installation, the concentration of geothermal water was carried out over 800 h, without significant performance losses.

Development of Solar Powered Water Pump - Energy conversion test and performance analysis - (태양열을 동력원으로 한 물펌프 연구개발 - 에너지변환실험과 성능해석 -)

  • 김영복;이양근;이승규;김성태;나우정;정병섭
    • Journal of Biosystems Engineering
    • /
    • v.27 no.4
    • /
    • pp.327-334
    • /
    • 2002
  • In this study, energy conversion from thermal energy to mechanical power by using n-pentane was tested and exergy variation, cycle number, water quantity pumped and thermal efficiency were analyzed. The energy conversion was done and the water head could be ten meters on the experimental conditions. The operating temperature range of cycle was recommended to be around the liquid-vapour saturation temperature of the working fluid on the viewpoint of the maximum work. The cycle diagram was analyzed by the exergy analysis. For the constant water head, the cycle number was decreased and the water quantity per day was increased and thermal efficiency become higher when the water quantity per cycle become increasing. For the constant pumping water quantity per cycle, cycle number and the water quantity per day was decreased and the thermal efficiency become higher because the saturation temperature become higher when the water head become higher.

STATUS AND PROSPECTS OF RESOLUTION OF THE VAPOUR EXPLOSION ISSUE IN LIGHT WATER REACTORS

  • Magallon, Daniel
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.603-616
    • /
    • 2009
  • The past two decades were mainly devoted to model validation and computer code verification against global corium experiments, code application to reactor situations, and investigation of the role of melt properties in steam explosion energetics. Corium data were essentially provided by JRC-Ispra in the FARO and KROTOS facilities and by KAERI in the TROI facility. Verification of code applicability to reactor situations was performed essentially in the frame of the international OECD/SERENA programme. The paper makes a synthesis of the findings made during the above-mentioned period and expresses a personal view of the author with respect to the progress made and expected for the resolution of the steam explosion issue for light water reactors.

Stydy of Pool Boiling under Steady State using Ultrasonic Measurement (초음파 측정법을 이용한 정상상태의 푸울비등 연구)

  • 장길홍
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.35-40
    • /
    • 1992
  • A recently developed new technique for measuring the fraction of wetted area has applied to pool boiling of water. The basis of the new applied technique of ultrasonic makes use of the reflection of ultrasonic from the vapour surface to measure the fraction of wetted area values. The results are the measured fraction of wetted area values in nucleate and transition boiling and the pool boiling curve for water under steady state conditions. The measurement of this paper shows a fraction of wetted areaf around 0.98 at the critical heat flux for water.

  • PDF

NEAR-INFRARED OBSERVING CONDITIONS AT THE BOAO AND THE SOAO (보현산천문대와 소백산천문대에서의 근적외선 관측 조건)

  • Moon, Bong-Kon;Lee, Sung-Ho;Park, Soo-Jong;Jin, Ho;Kim, Yong-Ha;Yuk, In-Soo;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.453-466
    • /
    • 2004
  • Korea Astronomy Observatory(KAO) has been developing the KAONICS, KAO Near-Infrared Camera System, which will be used for near-infrared observations in the ground-based telescopes of Korea. As a phase-A study for this work, we investigated observational environments at the Sobaeksan Optical Astronomy Observatory(SOAO) and the Bohyunsan Optical Astronomy Observatory(BOAO) quantitatively. In the J, H, K, and L bands, atmospheric transmission was calculated mainly depending on the PWV(Precipitable Water Vapour), and limiting magnitudes were computed for the SOAO and the BOAO, respectively. We conclude that these observatories have similar observing capabilities and domestic observations are possible in near-infrared.

A Trend for the Contrail Reduction Technology (비행운 저감 기술 동향)

  • Choi, Jaewon;Ock, Gwonwoo;Son, Myeongjin;Kim, Hyemin;Yang, Gyebyeong;Kim, Jihyun;Cho, Hana
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.23-29
    • /
    • 2018
  • Contrail is type of clouds which are formed by a condensation of water vapour from the aircraft exhaust when the aircraft is flying the cold atmosphere. Since contrails have considerable effect on greenhouse-effect and military stealth efficiency, researches about contrail avoidance technology has been conducted for decades. However, none of the previous researches concerning contrail avoidance was carried out in Korea. Thus, review of the previous study regarding contrail reduction is absolutely needed. In this paper, researches conducted by several countries are categorically introduced, and practicabilities of their methods are analyzed. This paper also suggests some practical and systematized way to conduct future researches about contrail avoidance.

Numerical investigation of two-phase natural convection and temperature stratification phenomena in a rectangular enclosure with conjugate heat transfer

  • Grazevicius, Audrius;Kaliatka, Algirdas;Uspuras, Eugenijus
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • Natural convection and thermal stratification phenomena are found in large water pools that are being used as heat sinks for decay heat removal from the reactor core using passive heat removal systems. In this study, the two-phase (water and air) natural convection and thermal stratification phenomena with conjugate heat transfer in the rectangular enclosure were investigated numerically using ANSYS Fluent 17.2 code. The transient numerical simulations of these phenomena in the full-scale computational domain of the experimental facility were performed. Generation of water vapour bubbles around the heater rod and evaporation phenomena were included in this numerical investigation. The results of numerical simulations are in good agreement with experimental measurements. This shows that the natural convection is formed in region above the heater rod and the water is thermally stratified in the region below the heater rod. The heat from higher region and from the heater rod is transferred to the lower region via conduction. The thermal stratification disappears and the water becomes well mixed, only after the water temperature reaches the saturation temperature and boiling starts. The developed modelling approach and obtained results provide guidelines for numerical investigations of thermal-hydraulic processes in the water pools for passive residual heat removal systems or spent nuclear fuel pools considering the concreate walls of the pool and main room above the pool.

Activity coefficients of Solvents and Ions in Electrolyte Solutions (전해질 용액에서 용매 및 이온의 활동도 계수)

  • Shim, Min-Young;Kim, Ki-Chang
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.185-194
    • /
    • 2000
  • In this work we measured the total pressure of the aqueous solutions and the methanol-water solutions dissolved with inorganic salts, at $25^{\circ}C$. In organic electrolytes used in this work were $K_2SO_4$ and $(NH_4)_2SO_4$. Using the measured vapour pressures the activity coefficient of solvents and the mean ionic activity coefficient were obtained through thermodynamic relations. The activity coefficients of solvent and the mean ionic activity coefficirnt obtained in this work were fitted with Macedo's model and Acard's model. Both two models were good agreeable to the vapor pressure and the mean ionic activity coefficient for the electroyte aqueous solutions. For electrolyte /methanol/water solutions, Macedo's model had much deviation from experimental data, while Acard's model showed a good agreement with experimental data.

  • PDF

Effects of water vapor on gas permeation and process simulation (기체투과에 미치는 수분의 영향과 공정모사)

  • 김종수;안순철;이광래
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.73-74
    • /
    • 1997
  • 1. 서론 : 공기중의 산소와 질소를 분리하여 공기 중에 21% 함유된 산소를 보다 높은 농도(21%이상)로 농축하기 위한 기초자료로서 건조 산소(dry O$_2$)와 건조 질소(dry N$_2$)의 투과도를 측정하였다. 그러나 공기중에는 항상 수분이 포함되어 있으므로 공기 중에 함유된 수분(water vapour)에 의한 산소 투과도와 질소 투과도의 변화를 측정하기 위하여 상대숩도 및 압력차이에 따른 영향을 고찰하였다. 그리고 분리막공정에서 순수기체의 막에 대한 투과도를 알 수 있다면 기체 혼합물에 대한 이상분리인자(ideal separation factor)를 알 수 있으며, 이를 이용하여 분리막의 분리 성능 예측이 가능하므로 투과도 예측식을 얻는다는 것은 매우 중요하다. 본 연구에서는 counter-current model을 이용하여 기체 혼합물의 투과도를 예측하고 실험치와 비교하였다.

  • PDF

Conducting ZnO Thin Film Fabrication by UV-enhanced Atomic Layer Deposition

  • Kim, Se-Jun;Kim, Hong-Beom;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.211.1-211.1
    • /
    • 2013
  • We fabricate the conductive zinc oxide(ZnO) thin film using UV-enhanced atomic layer deposition. ZnO is semiconductor with a wide band gap(3.37eV) and transparent in the visible region. ZnO can be deposited with various method, such as metal organic chemical vapour deposition, magnetron sputtering and pulsed laser ablation deposition. In this experiment, ZnO thin films was deposited by atomic layer deposition using diethylzinc (DEZ) and D.I water as precursors with UV irradiation during water dosing. As a function of UV exposure time, the resistivity of ZnO thin films decreased dramatically. We were able to confirm that UV irradiation is one of the effective way to improve conductivity of ZnO thin film. The resistivity was investigated by 4 point probe. Additionally, we confirm the thin film composition is ZnO by X-ray photoelectron spectroscopy. We anticipate that this UV-enhanced ZnO thin film can be applied to electronics or photonic devices as transparent electrode.

  • PDF