• Title/Summary/Keyword: Water vapor imagery

Search Result 10, Processing Time 0.025 seconds

Characteristics of Infrared and Water Vapor Imagery for the Heavy Rainfall Occurred in the Korean Peninsula (한반도에서 발생하였던 집중호우 시 적외 및 수증기 영상의 특성)

  • Seong, Min-Gyu;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.465-480
    • /
    • 2014
  • In this study, we analyzed the spatio-temporal variations of satellite imagery for the two heavy rainfall cases (21 September, 2010, 9 August, 2011) occurred in the Korean Peninsula. In general, the possibility of strong convection can be increased when the region with plenty of moisture at the lower layer overlapped with the boundary between dark and bright area in the water vapor imagery. And the merging of convective cells caused by the difference in the moving velocities of two cells resulted in the intensification of convective activity and rainfall intensity. The rainfall intensity is more closely linked with the minimum cloud top temperature than the mean cloud top temperature. Also the spatio-temporal variations of rainfall intensity are impacted by the existence of merging processes. The merging can be predicted by the animation of satellite imagery but earlier detection of convective cells is almost impossible by using the infrared and water vapor imagery.

Atmospheric Correction Issues of Optical Imagery in Land Remote Sensing (육상 원격탐사에서 광학영상의 대기보정)

  • Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1299-1312
    • /
    • 2019
  • As land remote sensing applications are expanding to the extraction of quantitative information, the importance of atmospheric correction is increasing. Considering the difficulty of atmospheric correction for land images, it should be applied when it is necessary. The quantitative information extraction and time-series analysis on biophysical variables in land surfaces are two major applications that need atmospheric correction. Atmospheric aerosol content and column water vapor, which are very dynamic in spatial and temporal domain, are the most influential elements and obstacles in retrieving accurate surface reflectance. It is difficult to obtain aerosol and water vapor data that have suitable spatio-temporal scale for high- and medium-resolution multispectral imagery. Selection of atmospheric correction method should be based on the availability of appropriate aerosol and water vapor data. Most atmospheric correction of land imagery assumes the Lambertian surface, which is not the case for most natural surfaces. Further BRDF correction should be considered to remove or reduce the anisotropic effects caused by different sun and viewing angles. The atmospheric correction methods of optical imagery over land will be enhanced to meet the need of quantitative remote sensing. Further, imaging sensor system may include pertinent spectral bands that can help to extract atmospheric data simultaneously.

MTSAT Satellite Image Features on the Sever Storm Events in Yeongdong Region (영동지역 악기상 사례에 대한 MTSAT 위성 영상의 특징)

  • Kim, In-Hye;Kwon, Tae-Yong;Kim, Deok-Rae
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.29-45
    • /
    • 2012
  • An unusual autumn storm developed rapidly in the western part of the East sea on the early morning of 23 October 2006. This storm produced a record-breaking heavy rain and strong wind in the northern and middle part of the Yeong-dong region; 24-h rainfall of 304 mm over Gangneung and wind speed exceeding 63.7 m $s^{-1}$ over Sokcho. In this study, MTSAT-1R (Multi-fuctional Transport Satellite) water vapor and infrared channel imagery are examined to find out some features which are dynamically associated with the development of the storm. These features may be the precursor signals of the rapidly developing storm and can be employed for very short range forecast and nowcasting of severe storm. The satellite features are summarized: 1) MTSAT-1R Water Vapor imagery exhibited that distinct dark region develops over the Yellow sea at about 12 hours before the occurrence of maximum rainfall about 1100 KST on 23 October 2006. After then, it changes gradually into dry intrusion. This dark region in the water vapor image is closely related with the positive anomaly in 500 hPa Potential Vorticity field. 2) In the Infrared imagery, low stratus (brightness temperature: $0{\sim}5^{\circ}C$) develops from near Bo-Hai bay and Shanfung peninsula and then dissipates partially on the western coast of Korean peninsula. These features are found at 10~12 hours before the maximum rainfall occurrence, which are associated with the cold and warm advection in the lower troposphere. 3) The IR imagery reveals that two convective cloud cells (brightness temperature below $-50^{\circ}C$) merge each other and after merging it grows up rapidly over the western part of East sea at about 5 hours before the maximum rainfall occurrence. These features remind that there must be the upward flow in the upper troposphere and the low-layer convergence over the same region of East sea. The time of maximum growth of the convective cloud agrees well with the time of the maximum rainfall.

Retrieval of satellite cloud drift winds with GMS-5 and inter comparison with radiosonde data over the Korea

  • Suh, Ae-Sook;Lee, Yong-Seob;Ryu, Seung-Ah
    • Proceedings of the KSRS Conference
    • /
    • 2000.04a
    • /
    • pp.49-54
    • /
    • 2000
  • Conventional methods for measuring winds provide wind velocity observations over limited area and time period. The use of satellite imagery for measuring wind velocity overcomes some of these limitations by providing wide area and near condinuous coverage. And its accurate depiction is essential for operational weather forecasting and for initialization of NWP models. GMS-5 provides full disk images at hourly intervals. At four times each day - 0500, 1100, 1700, 2300 hours UTC-a series of three images is received, separated by thirty minutes, centered at the four times. The current wind system generates winds from sets of 3 infrared(IR) images, separated by an hour, four times a day. It also produces visible(VIS) and water vapor(WV) image-based winds from half-hourly imagery four times a day. The derivation of wind from satellite imagery involves the identification of suitable cloud targets. tracking the targets on sequential images, associating a pressure height with the derived wind vector, and quality control. The aim of this research is to incorporate imagery from other available spectral channels and examine the error characteristics of winds derived from these images.

  • PDF

The generation of cloud drift winds and inter comparison with radiosonde data

  • Lee, Yong-Seob;Chung, Hyo-Sang;Ahn, Myeung-Hwan;Park, Eun-Jung
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.135-139
    • /
    • 1999
  • Wind velocity is one of the primary variables for describing atmospheric state from GMS-5. And its accurate depiction is essential for operational weather forecasting and for initialization of NWP(Numerical Weather Prediction) models. The aim of this research is to incorporate imagery from other available spectral channels and examine the error characteristics of winds derived from these images. Multi spectral imagery from GMS-5 was used for this purpose and applied to Korean region with together BoM(Bureau of Meteorology). The derivation of wind velocity estimates from low and high resolution visible, split window infrared, and water vapor images, resulted in improvements in the amount and quality of wind data available for forecasting.

  • PDF

Study on the Prediction of Turning Point of Typhoon Tracks using COMS Water Vapor Images (천리안 수증기 영상을 이용한 태풍진로의 전향위치 예측 연구)

  • Kim, Jong-Seok;Yoon, Ill-Hee
    • Journal of the Korean earth science society
    • /
    • v.35 no.3
    • /
    • pp.168-179
    • /
    • 2014
  • The purpose of this study focuses on the prediction time and location of turning-point of typhoon tracks using the water vapor images of Communication, Ocean and Meteorological Satellite (COMS) which has a very short observation interval. It targets a more accurate prediction of turning-point of typhoon tracks through the relationship between dry slot and northern/southern oscillations of jet stream. Jet stream moves by the position of jet streak and the ${\upsilon}$-component velocity of geostrophic wind. If the ${\upsilon}$-component of geostrophic wind gets stronger toward south, jet stream develops into a circular jet. In that condition, dry slot in satellite water vapor imagery extends toward south, and typhoon track turns as the distance of curved moisture band (CMB) gets narrowed down. If the interval of CMB is below $15^{\circ}$ of latitude, the typhoon track is turning toward north or northeast within 24 hours. As a result, typhoon track showed that when dry slot position was located less than $32^{\circ}N$, typhoon turned its track at $20-23^{\circ}N$ ($1^{th}$ Kong-Rey 2007 and $17^{th}$ Jelawt at 2012), and when in $35^{\circ}N$ above, it turned at $27^{\circ}N$ ($4^{th}$ Man-yi 2007).

Simulation of Sentinel-2 Product Using Airborne Hyperspectral Image and Analysis of TOA and BOA Reflectance for Evaluation of Sen2cor Atmosphere Correction: Focused on Agricultural Land (Sen2Cor 대기보정 프로세서 평가를 위한 항공 초분광영상 기반 Sentinel-2 모의영상 생성 및 TOA와 BOA 반사율 자료와의 비교: 농업지역을 중심으로)

  • Cho, Kangjoon;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.251-263
    • /
    • 2019
  • Sentinel-2 Multi Spectral Instrument(MSI) launched by the European Space Agency (ESA) offered high spatial resolution optical products, enhanced temporal revisit of five days, and 13 spectral bands in the visible, near infrared and shortwave infrared wavelengths similar to Landsat mission. Landsat satellite imagery has been applied to various previous studies, but Sentinel-2 optical satellite imagery has not been widely used. Currently, for global coverage, Sentinel-2 products are systematically processed and distributed to Level-1C (L1C) products which contain the Top-of-Atmosphere (TOA) reflectance. Furthermore, ESA plans a systematic global production of Level-2A(L2A) product including the atmospheric corrected Bottom-of-Atmosphere (BOA) reflectance considered the aerosol optical thickness and the water vapor content. Therefore, the Sentinel-2 L2A products are expected to enhance the reliability of image quality for overall coverage in the Sentinel-2 mission with enhanced spatial,spectral, and temporal resolution. The purpose of this work is a quantitative comparison Sentinel-2 L2A products and fully simulated image to evaluate the applicability of the Sentinel-2 dataset in cultivated land growing various kinds of crops in Korea. Reference image of Sentinel-2 L2A data was simulated by airborne hyperspectral data acquired from AISA Fenix sensor. The simulation imagery was compared with the reflectance of L1C TOA and that of L2A BOA data. The result of quantitative comparison shows that, for the atmospherically corrected L2A reflectance, the decrease in RMSE and the increase in correlation coefficient were found at the visible band and vegetation indices to be significant.

Satellite Image Analysis of Convective Cell in the Chuseok Heavy Rain of 21 September 2010 (2010년 9월 21일 추석 호우와 관련된 대류 세포의 위성 영상 분석)

  • Kwon, Tae-Yong;Lee, Jeong-Soon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.423-441
    • /
    • 2013
  • On 21 September 2010, one of Chuseok holidays in Korea, localized heavy rainfalls occurred over the midwestern region of the Korean peninsula. In this study MTSAT-2 infrared and water vapor channel imagery are examined to find out some features which are obvious in each stage of the life cycle of convective cell for this heavy rain event. Also the kinematic and thermodynamic features probably associated with them are investigated. The first clouds related with the Chuseok heavy rain are detected as low-level multicell cloud (brightness temperature: $-15{\sim}0^{\circ}C$) in the middle of the Yellow sea at 1630~1900 UTC on 20 Sept., which are probably associated with the convergence at 1000 hPa. Convective cells are initiated in the vicinity of Shantung peninsula at 1933 UTC 20, which have developed around the edge of the dark region in water vapor images. At two times of 0033 and 0433 UTC 21 the merging of two convective cells happens near midwestern coast of the peninsula and then they have developed rapidly. From 0430 to 1000 UTC 21, key features of convective cell include repeated formation of secondary cell, slow horizontal cloud motion, persistence of lower brightness temperature ($-75{\sim}-65^{\circ}C$), and relatively small cloud size (${\leq}-50^{\circ}C$) of about $30,000km^2$. Radar analysis showed that this heavy rain is featured by a narrow line-shaped rainband with locally heavy rainrate (${\geq}50$ mm/hr), which is located in the south-western edge of the convective cell. However there are no distinct features in the associated synoptic-scale dynamic forcing. After 1000 UTC 21 the convective cell grows up quickly in cloud size and then is dissipated. These satellite features may be employed for very short range forecast and nowcasting of mesoscale heavy rain system.

Analysis of Clear Sky Index Defined by Various Ways Using Solar Resource Map Based on Chollian Satellite Imagery (천리안 위성 영상 기반 태양자원지도를 활용한 다양한 정의에서의 청천지수 특성 분석)

  • Kim, Chang Ki;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.47-57
    • /
    • 2019
  • Clear sky indices were estimated by various ways based on in-situ observation and satellite-derived solar irradiance. In principle, clear sky index defined by clear sky solar irradiance indicates the impacts of cloud on the incoming solar irradiance. However, clear sky index widely used in energy sciences is formulated by extraterrestrial irradiance, which implies the extinction of solar irradiance due to mainly aerosol, water vapor and clouds drops. This study examined the relative difference of clear sky indices and then major characteristics of clear sky irradiance when sky is clear are investigated. Clear sky is defined when clear sky index based on clear sky irradiance is higher than 0.9. In contrast, clear sky index defined by extraterrestrial irradiance is distributed between 0.4 and 0.8. When aerosol optical depth and air mass coefficient are relative larger, solar irradiance is lower due to enhanced extinction, which leads to the lower value of clear sky index defined by extraterrestrial irradiance.

Reviewing the Explosively Deepening Cyclone(Cyclonic Bomb) over the East Sea with the Satellite Observations (위성관측에 의한 동해상의 폭발적 저기압의 고찰)

  • 정효상
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.126-138
    • /
    • 1996
  • The characteristics of rapid development of the low pressure system over the East Sea from 06 to 08 Nov., 1995 has been analyzed in detail by the synoptic numerical products and satellite observations. The Low system was initially triggered the development of the baroclinic leaf cloud over the border of the northern part of Korea and China and moved eastward and then developed explosively com-ma or lambda type cloud system over the East Sea. To forecast well the general development and movement of the coastal winter cyclone over the East Sea popularly in a numerical simulation by several scientists, the large baroclinicity, continuous support of water vapor, and sequential cold outbreak over the warm sea surface have been more commonly concerned about. The cyclone which the central surface pressure was dropped 40hPa within 24 hours has often accompanied strong wind and heavy snow- or rain-fall in the winter season. In all successive observations with 12-hourly satellite imagery and analyzed meteorological variables in this period, the centers of the sea-level pressure and 500hPa geopotential height associated with this cyclone were typically illustrated by moving farther eastward using GMS combined enhanced IR images. The maxi-mum wind sustained by this system with the intensity and central pressure of tropical storm was about 60 knots with the center pressure drop of 44hPa/day similar to the North American cyclonic bomb and Atlantic storm.