• Title/Summary/Keyword: Water temperature stress

Search Result 647, Processing Time 0.03 seconds

Experimental study for application of the punch shear test to estimate adfreezing strength of frozen soil-structure interface

  • Park, Sangyeong;Hwang, Chaemin;Choi, Hangseok;Son, Youngjin;Ko, Tae Young
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.281-290
    • /
    • 2022
  • The direct shear test is commonly used to evaluate the shear behavior of frozen soil-structure interfaces under normal stress. However, failure criteria, such as the Mohr-Coulomb failure criterion, are needed to obtain the unconfined shear strength. Hence, the punch shear test, which is usually used to estimate the shear strength of rocks without confinement, was examined in this study to directly determine the adfreezing strength. It is measured as the shear strength of the frozen soil-structure interface under unconfined conditions. Different soils of silica sand, field sand, and field clay were prepared inside the steel and concrete ring structures. Soil and ring structures were frozen at the target temperature for more than 24 h. A punch shear test was then conducted. The test results show that the adfreezing strength increased with a decrease in the target temperature and increase in the initial water content, owing to the increase in ice content. The adfreezing strength of field clay was the smallest when compared with the other soil specimens because of the large amount of unfrozen water content. The field sand with the larger normalized roughness showed greater adfreezing strength than the silica sand with a lower normalized roughness. From the experiment and analysis, the applicability of the punch shear test was examined to measure the adfreezing strength of the frozen soil-structure interface. To find a proper sample dimension, supplementary experiments or numerical analysis will be needed in further research.

Characteristics Evaluation of Al2O3 ALD Thin Film Exposed to Constant Temperature and Humidity Environment (항온항습 환경에 노출된 Al2O3 ALD 박막의 특성 평가)

  • Kim, Hyeun Woo;Song, Tae Min;Lee, Hyeong Jun;Jeon, Yongmin;Kwon, Jeong Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.11-14
    • /
    • 2022
  • In this work, we evaluated the Al2O3 film, which was deposited by atomic layer deposition, degraded by exposure to harsh environments. The Al2O3 films deposited by atomic layer deposition have long been used as a gas diffusion barrier that satisfies barrier requirements for device reliability. To investigate the barrier and mechanical performance of the Al2O3 film with increasing temperature and relative humidity, the properties of the degraded Al2O3 film exposed to the harsh environment were evaluated using electrical calcium test and tensile test. As a result, the water vapor transmission rate of Al2O3 films stored in harsh environments has fallen to a level that is difficult to utilize as a barrier film. Through water vapor transmission rate measurements, it can be seen that the water vapor transmission rate changes can be significant, and the environment-induced degradation is fatal to the Al2O3 thin films. In addition, the surface roughness and porosity of the degraded Al2O3 are significantly increased as the environment becomes severer. the degradation of elongation is caused by the stress concentration at valleys of rough surface and pores generated by the harsh environment. Becaused the harsh envronment-induced degradation convert amorphous Al2O3 to crystalline structure, these encapsulation properties of the Al2O3 film was easily degraded.

Modelling Analysis of Climate and Soil Depth Effects on Pine Tree Dieback in Korea Using BIOME-BGC (BIOME-BGC 모형을 이용한 국내 소나무 고사의 기후 및 토심 영향 분석)

  • Kang, Sinkyu;Lim, Jong-Hwan;Kim, Eun-Sook;Cho, Nanghyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.242-252
    • /
    • 2016
  • A process-based ecosystem model, BIOME-BGC, was applied to simulate seasonal and inter-annual dynamics of carbon and water processes for potential evergreen needleleaf forest (ENF) biome in Korea. Two simulation sites, Milyang and Unljin, were selected to reflect warm-and-dry and cool-and-wet climate regimes, where massive diebacks of pines including Pinus densiflora, P. koraiensis and P thunbergii, were observed in 2009 and 2014, respectively. Standard Precipitation Index (SPI) showed periodic drought occurrence at every 5 years or so for both sites. Since mid-2000s, droughts occurred with hotter climate condition. Among many model variables, Cpool (i.e., a temporary carbon pool reserving photosynthetic compounds before allocations for new tissue production) was identified as a useful proxy variable of tree carbon starvation caused by reduction of gross primary production (GPP) and/or increase of maintenance respiration (Rm). Temporal Cpool variation agreed well with timings of pine tree diebacks for both sites. Though water stress was important, winter- and spring-time warmer temperature also played critical roles in reduction of Cpool, especially for the cool-and-wet Uljin. Shallow soil depth intensified the drought effect, which was, however, marginal for soil depth shallower than 0.5 m. Our modeling analysis implicates seasonal drought and warmer climate can intensify vulnerability of ENF dieback in Korea, especially for shallower soils, in which multi-year continued stress is of concern more than short-term episodic stress.

Transcriptional Response of Major Antioxidant Enzyme Genes to Heat Stress in Mud Loach (Misgurnus mizolepis) (고온 스트레스에 대한 미꾸라지(Misgurnus mizolepis) 항산화 효소 유전자들의 발현 특징)

  • Cho Young-Sun;Lee Sang-Yoon;Bang In-Chul;Kim Dong-Soo;Nam Yoon-Kwon
    • Journal of Aquaculture
    • /
    • v.19 no.3
    • /
    • pp.157-165
    • /
    • 2006
  • Expression of major antioxidant enzyme (AOE) including Cu/Zn superoxide dismutase (Cu/Zn-SOD), catalase (CAT), glutathione-S-transferase (GST) and 3 glutathione peroxidase isotypes (GPXs) at mRNA levels during heat stress was examined in mud loach (Misgurnus mizolepis) liver. Based on the semi-quantitative RT-PCR, real-time RT-PCR and/or northern dot blot hybridization, the antioxidant enzyme genes were generally up-regulated during elevation of water temperature from $23^{\circ}C$ up to $32^{\circ}C$. GPXs and SOD displayed the most significant elevation of mRNA levels (up to 3 and 2 folds, respectively) while CAT showed the steady-state expression irrespective of thermal conditions. GST represented the relatively moderate response (1.3-fold increase) in its transcription to thermal stress. The transcriptional activation of AOE genes was not significant at the treatment temperature lower than $29^{\circ}C$. Increased mRNA levels of GPX (extracellular form) and SOD genes in the fish exposed to $32^{\circ}C$ was readily detectable 1 day after exposure to heat stress.

Analysis of Changes in Photosynthetic Ability, Photosystem II Activity, and Canopy Temperature Factor in Response to Drought S tress on Native Prunus maximowiczii and Prunus serrulate (자생 산개벚나무, 잔털벚나무의 건조 스트레스에 따른 광합성 및 광계II 활성, 엽온 인자 변화 분석)

  • Jin, Eon-Ju;Yoon, Jun-Hyuck;Bae, Eun-Ji
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.405-417
    • /
    • 2022
  • The purpose of this study was to describe the photosynthetic features of Prunus maximowiczii and Prunus serrulate Lindl. var. pubescens (Makino) Nakai in response to drought stress. Specifically, we studied the effects of drought on photosynthetic ability and photosystem II activity. Drought stress (DS) was induced by cutting the water supply for 30 days. DS decreased the moisture contents in the soil, and between the 10th and 12th days of DS, both species had 10% or less of x., After the 15th day of DS, it was less than 5%, which is a condition for disease to start. We observed a remarkable decrease of maximum photosynthesis rate starting from 10th day of DS; the light compensation point was also remarkable. Dark respiration and net apparent quantum yield decreased significantly on the 15th day of DS, and then increased on the 20th day. In addition, the stomatal transpiration rate of P. maximowiczii decreased significantly on the15th day of DS, and then increased on the 20th day. Water use efficiency increased on the 15th day of DS, and then decreased on the 20th day. The stomatal transpiration rate of P. serrulate decreased significantly on the 20th day of DS, and then increased afterward, while its water use efficiency increased on the 20th day of DS, and then decreased afterward. These results indicate that the closure of stoma prevented water loss, resulting in a temporary increase of water use efficiency. Chlorophyll fluorescence analysis detected remarkable decreases in the functional index (PIABS) and energy transfer efficiency in P. maximowiczii after the 15th day of DS. Meanwhile, photosystem II activity decreased in P. serrulate after 20 days of DS. In addition, Ts-Ta, PIABS, DIO/RC, ETO/RC followed similar trends as those of the soil moisture content and photosynthetic properties, indicating that they can be used as useful variables in predicting DS in trees.

Extrusion Process of Barley Flour for Snack Processing (스낵제조를 위한 보리의 압출성형공정)

  • Mok, Chul-Kyoon;Pyler, R.E.;Mcdonald, C.E.;Nam, Young-Jung;Min, Byong-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.429-436
    • /
    • 1984
  • To expand the utility of barley the experiments on the extrusion characteristics of barley flour for snack processing were carried out and the effects of the extrusion conditions on the quality of the extrudates were investigated. The optimum moisture content of barley flour for snack processing was 20%. The moisture content and the density of the extrudates decreased with increasing extrusion temperature and decreasing die size. The die swell ranged from 0.98 to 2.18 according to various extrusion conditions and decreased with increasing temperature above $150^{\circ}C$. The lightness, redness and yellowness increased at higher temperature. The water absorption index and the water solubility index showed their maximum values at $180^{\circ}C$.The gelatinization degree of the extrudates increased with increasing temperature. The fracture fore, Young's modulus and maximum fiber stress decreased, but the deformation to fracture increased, with increasing temperature and decreasing die size. The yield force in puncture test showed lower values at higher temperature. The size and the fraction of the air cells increased with increasing temperature and decreasing die size. The optimum extrusion conditions of barley for snack processing were at the temperature of $180^{\circ}C$, with the die size of 4.5mm when processed at 160 rpm.

  • PDF

The effect of Temperature Reduction of Green Roof using Rainwater Storage Tank (빗물 저류 시스템을 활용한 옥상 녹화의 온도 저감 효과)

  • Yun, Seok-Hwan;Kim, Eun-Sub;Piao, Zheng-Gang;Jeon, Yoon-Ho;Kang, Hye-Won;Kim, Sang-Hyuck;Kim, Ji-Yeon;Kang, Han-Min;Ham, Eun-Kyung;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.109-119
    • /
    • 2021
  • Thermal environment of city is getting worse due to severe urban heat island caused by climate change and urbanization. Green roof improves the urban thermal environment and save the cooling energy in buildings. This study presented a green roof combined with a storage system that stores rain-water and supplies water through a wick and evaluated the temperature reduction effect as surface temperature and amount of evapotranspiration. For about a week, the surface temperature using a infrared thermal imager and the evapotranspiration by recording change of module weight were measured at intervals of 30 minutes from sunrise to sunset. The results show that the mean surface temperature of the green roof was 15.4 degrees lower than that of the non-green roof from 12:00 P.M. to 14:00 P.M. There was no significant difference between mean surface temperature of green roof with and without storage system immediately after rain, but more than a week after rain, there was a difference with average of 2.49 degrees and maximum of 4.72 degrees. The difference in daily amount of evapotranspiration was measured to be 1.66 times on average. As drought stress increased over time, the difference in daily amount of evapotranspiration and surface temperature between with/without storage system increased simultaneously. The results of the study show a more excellent cooling effect of green roof combined with the rainwater storage system.

Thermal Environment Transition of Response Climate Change and Heat Wave Application Evaporative Cooling System (기후변화 및 폭염대응 증발냉각시스템 적용에 따른 내·외부 열환경 변화 연구)

  • Kim, Jeong-Ho;Kim, Hak-Gi;Yoon, Yong-Han;Kwon, Ki-Uk
    • Journal of Environmental Science International
    • /
    • v.25 no.9
    • /
    • pp.1269-1281
    • /
    • 2016
  • This study evaporative cooling system a heat wave climate change and reduction of the inside and outside thermal environment change research. Measurement items included micro meteorological phenomena and measured comfort indices. A micro meteorograph of temperature, relative humidity, surface temperature, and the comfort indices of WBGT, UTCI, and PMV were measured. The difference in inside and outside temperatures were compared for different land types, with the largest difference found in Type A ($4.81^{\circ}C$), followed by Type B ($4.40^{\circ}C$) and Type C ($3.12^{\circ}C$). Relative humidity was about 10.43% higher inside due to water injection by the evaporative cooling system. Surface temperature was inside about $6.60^{\circ}C$ higher than the outside all types. WBGT were Type A ($3.50^{\circ}C$) > Type B ($2.71^{\circ}C$) > Type C ($1.88^{\circ}C$). UTCI was low heat stress inside than outside all types. PMV was analysed Type C for inside predicted percentage of dissatisfied 75%, other types was percentage of dissatisfied 100% by inside and outside. Correlation analysis between land cover type and temperature, surface temperature, pmv, utci. T-test analysed inside and outside temperature difference was significant in all types of land.

Establishment of Fatigue Life Evaluation and Management System for District Beating Pipes Considering Operating Temperature Transition Data (운전이력을 고려한 지역난방 열배관의 피로수명 평가 및 관리 체계 구축)

  • Chang Yoon-Suk;Jung Sung-Wook;Kim Hyeong-Keun;Choi Jae-Boong;Kim Sang-Ho;Kim Youn-Hong;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1235-1242
    • /
    • 2005
  • A district heating(DH) system supplies environmentally-friend heat and is appropriate for reduction of energy consumption and/or air pollutions. The DH transmission pipe, composed of supply and return pipes, has been used to transmit the heat and prevent heat loss during transportation. The two types of pipes are operated at a temperature of $75\~115^{\circ}C\;and\;40\~65^{\circ}C$, respectively, with an operating pressure of less than 1.568MPa. The objectives of this paper are to systematize data processing of transition temperature and investigate its effects on fatigue life of DH pipes. For the sake of this, about 5 millions temperature data were measured during one year at ten locations, and then available fatigue lift estimation schemes were examined and applied to quantify the specific thermal fatigue life of each pipe. As a result, a relational database management system as well as reliable fatigue lift evaluation procedures is established for Korean DH pipes. Also, since the prototypal evaluation results satisfied both cycle-based and stress-based fatigue criteria, those can be used as useful information in the future fer optimal design, operation and energy saving via setting of efficient condition and stabilization of water temperature.

Developing a Model for Estimating Leaf Temperature of Cnidium officinale Makino Based on Black Globe Temperature (흑구온도를 이용한 천궁 엽온 예측 모델 개발)

  • Seo, Young Jin;Nam, Hyo Hoon;Jang, Won Cheol;Lee, Bu Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.6
    • /
    • pp.447-454
    • /
    • 2018
  • Background: The leaf temperature ($T_{LEAF}$) is one of the most important physical parameters governing water and carbon flux, including evapotranspiration, photosynthesis and respiration. Cnidium officinale is one of the important folk medicines for counteracting a variety of diseases, and is particularly used as a traditional medicinal crop in the treatment of female genital inflammatory diseases. In this study, we developed a model to estimate $T_{Leaf}$ of Cnidium officinale Makino based on black globe temperature ($T_{BGT}$). Methods and Results: This study was performed from April to July 2018 in field characterized by a valley and alluvial fan topography. Databases of $T_{LEAF}$ were curated by infrared thermometry, along with meteorological instruments, including a thermometer, a pyranometer, and an anemometer. Linear regression analysis and Student's t-test were performed to evaluate the performance of the model and significance of the parameters. The correlation coefficient between observed $T_{LEAF}$ and calculated $T_{BGT}$ obtained using an equation, developed to predict $T_{LEAF}$ based on $T_{BGT}$ was very high ($r^2=0.9500$, p < 0.0001). There was a positive relationship between $T_{BGT}$ and solar radiation ($r^2=0.8556$, p < 0.0001), but a negative relationship between $T_{BGT}$ and wind speed ($r^2=0.9707$, p < 0.0001). These results imply that heat exchange in leaves seems to be mainly controlled by solar radiation and wind speed. The correlation coefficient between actual and estimated $T_{BGT}$ was 0.9710 (p < 0.0001). Conclusions: The developed model can be used to accurately estimate the $T_{Leaf}$ of Cnidium officinale Makino and has the potential to become a practical alternative to assessing cold and heat stress.