• Title/Summary/Keyword: Water temperature stress

Search Result 652, Processing Time 0.032 seconds

Field experiment on effect of butaphosphan and cyanocobalamin complex on the immunity and stress of olive flounder at low temperature

  • Kim, Seung Min;Lee, Da Won;Kim, You Jeong;Jun, Lyu Jin;Park, Hyun Kyung;Kim, Ye Ji;Jeong, You Yong;Lee, Sung Ho;Kwon, Mun Gyeong;Jeong, Joon Bum
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.4
    • /
    • pp.153-162
    • /
    • 2021
  • In this study, a fish metabolic accelerator (a combination of butaphosphan and cyanocobalamin [BPC]) was injected into the muscle of the olive flounder, Paralichthys olivaceus, to investigate its effect on immunity and stress in fish maintained at low temperatures. A single dose of BPC was injected (100 mg/kg body weight) into the olive flounder, and its immunity and stress were observed after one and two weeks. Immunity tests revealed the presence of lysozyme (LZM), nitroblue tetrazolium (NBT), myeloperoxidase (MPO), anti-protease (AP), glutathione peroxidase (GPx), and total immunoglobulin (TIg). BPC injection was found to increase immunity activity compared to the control group. In particular, there was significantly high GPx activity. There was similarly high activity for MPO and GPx in the first week following the injection, followed by significant differences between the BPC-injected and control groups in the second week. There was a reduced low water-temperature stress response in the BPC-injected fish, as evidenced by the cortisol and glucose levels of the control and BPC groups. Lower levels were also observed in the BPC group than the control group during the second week. Cortisol levels were significantly lower in the BPC group than the control group. Histological examinations were conducted in the first and second weeks after the intramuscular injection of the recommended BPC dose to confirm the safety of BPC in aquaculture. There were no abnormalities observed in any tissue samples. This study confirms that the injection of BPC is safe even when used in a culture situation. BPC helps relieve stress and improves non-specific immune responses (innate immunity) in the olive flounder.

Physiological and Histological Changes of Overfeeding-induced Obese Rainbow Trout Oncorhynchus mykiss (사료 과다공급으로 유도된 비만 무지개송어(Oncorhynchus mykiss)의 생리·조직학적 변화)

  • Park, Jiyeon;Roh, Heyong Jin;Park, Junewoo;Jeong, Dahye;Lee, Mu Kun;Kim, Do-Hyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.688-696
    • /
    • 2022
  • Obesity could cause immune-physiological disorders in fish. Yet, little is known about the impact of obesity on stress and histological responses. This study aimed to determine histological and physiological changes in and vulnerability of overfeeding-induced obese rainbow trout Oncorhynchus mykiss exposed to stress condition. Control, intermediate and overfed groups were fed at 1.5, 2.5 and 3.09% of their body weight per day, respectively, for eight weeks. Weight gain, body mass index, hepatosomatic index and serological parameters, and histology of liver were measured in five fish from each group at week 0, 2, 4, and 8. At week 8, 20 fish from each group were exposed to heat stress by increasing water temperature at a rate of 3℃ per day from 15 to 25℃ and maintaining the final temperature for 10 days. Overall, overfed fish showed significantly higher weight gain, body mass index, and serological parameters than those of fish in the other groups. Fish in the overfed and intermediate groups displayed multifocal infiltration of inflammatory cells in hepatic parenchyma. Mortality rate and serological parameters of fish in the overfed group exposed to heat stress were significantly higher than those of fish in the other groups, indicating increased vulnerability to environmental stress.

Corrosive Characterisics of 12Cr Alloy Steel and Fatigue Characteristics of the Artificially Degraded 12Cr Alloy Steel (고온의 인공해수 중 12Cr강의 부식피로특성에 관한 연구)

  • Jo, Seon-Yeong;Kim, Cheol-Han;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.772-778
    • /
    • 2001
  • In this study, corrosion fatigue characteristics of 12Cr alloy steel were investigated in 3.5wt.% NaCl solution of 150$^{\circ}C$ and 4.5bar. Behavior of corrosion fatigue cracks was measured by the indirect compliance method and compared with the results in distilled water and in air. 1) 12Cr alloy steel was susceptible to temperature. Its susceptibility was increased as the temperature was increased. 2) The crack growth characteristics of 12Cr alloy steel in distilled water were similar to 3.5wt.% NaCl solution. 3) The temperature of solution affects to the crack growth characteristics of 12Cr alloy steel. In corrosion solutions of 4.5bar, 150$^{\circ}C$, fracture surfaces of corrosion fatigue crack growth at a/W=0.3 was showed the trans-granular fracture suface. As the crack grew up, it was changed to inter-granular type. In condition of high temperature, The crack growth behaviors of 12Cr alloy steel were remarkable.

Water Status and Photosynthetic Activities of Evergreen Broad-leaved Trees in Dadohae National Marine Park (다도해 해상 국립공원 상록활엽수의 수분상태와 광합성능)

  • Ihm, Byung-Sun;Gae-Hong Suh;Jeom-Sook Lee
    • The Korean Journal of Ecology
    • /
    • v.16 no.3
    • /
    • pp.353-364
    • /
    • 1993
  • To elucidate ecophysiological factors affecting nutural distribution of evergreen broad-leabed trees in Danohad National Marine Park, water potential, relative water content and photosynthetic activities of 4 species, Cammellia japonica, Machilus thunbergii, Castanopsis cuspidata var.sieboldii and Quercus acuta, were potential began to decrease from 07:00h to its minimum value at 13:00h for C. cuspidata var. sieboldii (-14.3bar) and Q. acuta (-19.4bar) at 16:00 h for M. thunbergii(-17.0bar) and at 19:00 h for C. japonica (-14.5bar), and these showed similar trends to relative water content. Photosynthetic activities of 4 species began to increase from 7:00 h and reached maximum values before their minimum values of water potential occureed. Optimum temperature renges of photosynthetic activities was $18~20^{\circ}C$ for C. japonica - M. thunbergii and $14~16^{\circ}C$ for C. cuspidata var. sieboldii Quercus acuta.Q.acuta had the highest light saturation point of $0.4mM/m^2/s$ and C. japonica the lowest of $0.15mM/m^2/s$. Water potential of 4 species subjected to water stress, began to decrease after 1st day of drought and after 21th day of drought, those of C. japonica, M. thunbergii, C. cuspidata var. sieboldii and Q. acuta decreased to species began to decrease after 7th day of drought and after 21th day, those of M. thunbergii, C. cuspidata var. sieboldii and Q. acuta were dropped to about 50% and C. japonica 83.5%. Photosynthetic activity of 4 specie began to decline in the order of C. cuspidata var. sieboldii, Q.acuta, C. japonica and M. thunbergii after 10th day of drought. These results suggest that the segregated disributions of C. japonica - M. thunbergii on vally positions and C. cuspidata var. sieboldii - Q. acuta on slopes were associated with different responses of water status and photosyntheties to their environment.

  • PDF

Developing Liquid Cooling Garments to Alleviate Heat Strain of Workers in Summer and Exploring Effective Cooling Temperature and Body Regions (여름철 작업자들의 고체온증 예방을 위한 액체냉각복 개발 및 효과적인 냉각온도와 인체 냉각부위 탐색)

  • Jung, Jae-Yeon;Kang, Juho;Seol, Seonhong;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.22 no.2
    • /
    • pp.250-260
    • /
    • 2020
  • The purpose of the present study was to explore the most effective body region and cooling temperature to alleviate heat strain of workers in hot environments. We developed liquid cooling hood, vest, sleeves and socks and applied the water temperatures of 10, 15, 20, and 25℃ through the liquid cooling garments in a hot and humid environment (33℃ air temperature and 70% RH air humidity). A healthy young male participated in a total of 16 experimental trials (four cooling garments × four cooling temperatures) with the following protocol: 10-min rest, 40-min exercise on a treadmill and 10-min recovery. The results showed that rectal temperature, mean skin temperature, and ratings of perceived exertion during exercise; heart rate and diastolic blood pressure during recovery; and total sweat rate were lower for the vest condition than other garment conditions(p < .05). However, there was no differences in mean skin temperature among the four cooling garments when we compared the values converted by covering area(%BSA). When we classified the results by cooling temperature, there were no consistent differences in thermoregulatory and cardiovascular responses among the four temperatures, but 25℃ water temperature was evaluated as being the most ineffective cooling temperature in terms of subjective responses. In conclusion, the results indicated that wearing cooling vest with < 20℃ cooling temperature can alleviate heat strain of workers in hot and humid environments. If the peripheral body regions are cooled with liquid cooling garments, larger cooling area with lower cooling temperature than 10℃ would be effective to reduce heat strain of workers. Further studies with a vaild number of subjects are required.

A Numerical Model for Heat and Mass Transfer Processes within a Vertical Tube GAX Absorber (수직원관형 GAX 흡수기 내부의 열 및 물질전달과정에 대한 수치모델)

  • 천태식;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.102-111
    • /
    • 2000
  • A numerical model which simulates the simultaneous heat and mass transfer within a vertical tube GAX absorber was developed. The ammonia vapor and the solution liquid are in counter-current flow, and the hydronic fluid flows counter to the solution liquid. The film thickness and the velocity distribution of the liquid film were obtained by matching the shear stress at the liquid-vapor interface. Two-dimensional diffusion and energy equations were solved in the liquid film to give the temperature and concentration, and a modified Colburn-Drew analysis was used for the vapor phase to determine the heat and mass fluxes at the liquid-vapor interface. The model was applied to a GAX absorber to investigate the absorption rates, temperature and concentration profiles, and mass flow rates of liquid and vapor phases. It was shown that the mass flux of water was negligible compared with that of ammonia except the region near the liquid inlet. Ammonia absorption rate increases rapidly near the liquid inlet and decrease slowly. Both the absorption rate of ammonia vapor and the desorption rate of water near the liquid inlet increase as the vapor mass flow rate increases, but the mass fluxes of the ammonia and the water near the liquid outlet decrease as the mass flow rate of the vapor increases.

  • PDF

Effects of Foliar Application of Glycine Betaine on the Growth and Contents of Osmolyte in Tomato Seedling (Glycine betaine 엽면 처리가 토마토 유묘의 생육과 삼투조절물질 함량에 미치는 영향)

  • Kang, Nam-Jun;Kwon, Joon-Kook;Lee, Jae-Han;Park, Jin-Myeon;Rhee, Han-Chul;Choi, Young-Hah
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.390-395
    • /
    • 2006
  • Effects of exogenously foliar applied glycine betaine (GB) on the growth and contents of osmolyte in tomato seedling was investigated. Plants treated with exogenous glycine betaine induced better biomass production and plant height during chilling stress than the untreated plants. The total soluble sugar contents in GB foliar-applied plants lower than that of untreated plants 28 days after foliar application. Total water soluble protein contents in GB foliar-applied plants did not change 28 days after chilling stress. In untreated plant, it decreased rapidly in the beginning of chilling stress. Proline contents in untreated plants rapidly increased by the beginning of chilling stress, and then slightly decreased during the next 3 weeks. However proline contents in GB foliar-applied plants did not change during the 28 days chilling stress period. The results suggest that foliar application of GB is a effect methods to increase the chilling tolerance of tomato seedlings in protected cultivation system at low temperature season.

MEASUREMENT OF SURFACE TENSION OF MOLTEN METALS IN ARC WELDING

  • Shinobu Satonaka;Shigeo Akiyoshi;Inoue, Rin-taro;Kim, Kwang-Ryul
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.757-762
    • /
    • 2002
  • Many reports have been shown that the buoyancy, electromagnetic force, surface tension, and gas shear stress are the driving forces of weld pool circulation in arc welding. Among them, the surface tension of molten metal plays an important role in the flow in weld pool, which are clarified by the specially designed experiments with small particles as well as the numerical simulations. The surface tension is also related to the penetration in arc welding. Therefore, a quantitative evaluation of surface tension is demanded for the development of materials and arc process control. However, there are few available data published on the surface tension of molten metals, since it depends on the temperature and the composition of materials. In this study, a new method was proposed for the evaluation of surface tension and its temperature dependence, in which it is evaluated by the equilibrium condition of acting forces under a given surface geometry, especially back surface. When this method was applied to the water pool and to the back surface of molten pool in the stationary gas tungsten arc welding of thin plate, following results were obtained. In the evaluation of surface tension of water, it was shown that the back surface geometry was very sensitive to the evaluation of surface tension and the evaluated value coincided with the surface tension of water. In the measurement of molten pool in the stationary gas tungsten arc welding, it was also shown that the comparison between the surface tension and temperature distribution across the back surface gave the temperature dependent surface tension. Applying this method to the mild steel and stainless steel plates, the surface tension with negative gradient for temperature is obtained. The evaluated values are well matched with ones in the published papers.

  • PDF

A Study on the Characteristics of Perceived Temperature over the Korean Peninsula During 2007 Summer (한반도 2007년 여름철 인지온도 특성 연구)

  • Byon, Jae-Young;Kim, Jeong-Sik;Kim, Ji-Young;Choi, Byoung-Cheol;Choi, Young-Jean;Graetz, Angelika
    • Atmosphere
    • /
    • v.18 no.2
    • /
    • pp.137-146
    • /
    • 2008
  • This study examines one thermal index, perceived temperature (PT), over the Korean Peninsula during 2007 summer. Heat/cold stress has been described using air temperature and humidity for warm seasons and air temperature and wind velocity in the cold conditions, while PT is based on a heat budget model of the human body that considers air temperature, humidity, wind velocity and radiation effect regardless of climates, regions and seasons. PT is higher about $4-5^{\circ}C$ than air temperature in the summer. Humidity increases PT, while wind tends to reduces PT possibly by evaporation of water vapor. The geographical distribution of summer PT indicates that the lowest PT happened in the east central region, with the appearance of the highest PT in the inland of southern region in Korea. Although the latitudinal trend shows that PT decreases northward, inland PT is higher than that of coastal region. Compared to the heat index or the discomfort index that considers air temperature and humidity, PT represents distinctive regional characteristics of thermal comfort. The distribution of PT shows that it may be a useful thermal index for the assessment of thermal comfort or stress region in the Korean Peninsula.

Study of Warm Forging Process for Non-Heat-Treated Steel (비조질강 온간단조를 위한 공정검토)

  • Park, J.S.;Kang, J.D.;Lee, Y.S.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.525-530
    • /
    • 2001
  • As a part of efforts to examine feasibility of warm forging near-net-shape process for non-heat-treated steel to replace quenched and tempered S45C steel, the optimized process condition has been determined to be $820^{\circ}C$ for heating, 10/sec for strain rate of forging and approximately 250MPa for flow stress from observed results such as the $A_{3}$ transformation temperature of about $790^{\circ}C$, the fully dynamic recrystallized behavior between $800^{\circ}C\;and\;850^{\circ}C$ when compressed up to 63% engineering strain at 10/sec strain rate, and the high temperature microsturctural stability. Also, controlled cooling rate of $6.3^{\circ}C/sec$ by water-spraying at a rate of $0.10cc/sec-cm^{2}$ for 60seconds followed by air-cooling right after forging process has been considered in this study as a feasible approach based on examination of the microsturcture of mixed ${\alpha}-ferrite$ and pearlite, the hardness and tensile properties meeting specification, and the reduced total cooling time to room temperature. Successive works would be carried out for the impact strength, machinalility, and forgeability at this process in the near future.

  • PDF