In this work, a scalable algorithm for model calibration in nuclear engineering applications is presented and tested. The algorithm relies on the construction of surrogate models to replace the original model within the region of interest. These surrogate models can be constructed efficiently via reduced order modeling and subspace analysis. Once constructed, these surrogate models can be used to perform computationally expensive mathematical analyses. This work proposes a surrogate based model calibration algorithm. The proposed algorithm is used to calibrate various neutronics and thermal-hydraulics parameters. The virtual environment for reactor applications-core simulator (VERA-CS) is used to simulate a three-dimensional core depletion problem. The proposed algorithm is then used to construct a reduced order model (a surrogate) which is then used in a Bayesian approach to calibrate the neutronics and thermal-hydraulics parameters. The algorithm is tested and the benefits of data assimilation and calibration are highlighted in an uncertainty quantification study and requantification after the calibration process. Results showed that the proposed algorithm could help to reduce the uncertainty in key reactor attributes based on experimental and operational data.
기후변화는 물 관리의 가장 큰 리스크 요인이므로 물 관리 계획을 수립하는 과정에서 기후변화의 영향을 고려하는 것이 필수적이다. 기후변화에 대한 수자원 예측 관련 연구가 이루어지고 있으나, 대부분의 연구에는 수문학적 모델링이나 시뮬레이션이 동반되는데, 이 과정에는 시간과 비용이 많이 들어가며, 지역이나 연구목적에 따른 정밀한 매개변수의 보정은 전문지식이 필요하기 때문에 현업에서 연구결과를 의사결정에 활용하기에는 한계가 있다고 볼 수 있다. 이에 따라 수문학적 모델링의 입력 및 출력 결과를 딥러닝의 학습자료로 하여 수문모델을 사용하지 않아도 효율적으로 결과를 도출할 수 있는 딥러닝 기반 Surrogate 모형에 대한 연구가 이루어지고 있으나 수자원 분야에 접목된 사례는 부재한 실정이다. 따라서 이 연구를 통해 국내 유역을 대상으로 Surrogate 모형을 구축한 뒤, 그 성능을 평가하고자 한다. 이를 위한 Surrogate 모형 구축 과정은 다음과 같다. 충주댐 유역을 대상으로 과거 20년간의 강우 및 기온 자료를 수집한 뒤, 이 자료를 바탕으로 기후변화의 영향을 고려한 3,162개의 시나리오를 생성한다. 그 후 장기유출모형 IHACRES에 생성된 시나리오를 입력자료로 하여 유입량 결과를 도출하고, 이 결과를 Python코드 기반의 딥러닝 학습자료로 하여 최적 예측 결과를 도출해내는 Surrogate 모형을 생성한 뒤 기존 장기유출모형과의 성능을 비교하고자 한다. 이와 같은 Surrogate 모형은 추가적인 데이터와 매개변수의 보정 과정이 없어도 장기유출모형과 같은 결과를 짧은 시간내에 상당히 정확하게 모사할 수 있어 시간과 비용을 줄일 수 있으며, 비전문가도 쉽게 사용할 수 있다는 장점을 가진다.
Conventional Monte Carlo simulation-based methods for seismic risk assessment of water networks often require excessive computational time costs due to the hydraulic analysis. In this study, an Artificial Neural Network-based surrogate model was proposed to efficiently evaluate the flow-based system reliability of water distribution networks. The surrogate model was constructed with appropriate training parameters through trial-and-error procedures. Furthermore, a deep neural network with hidden layers and neurons was composed for the high-dimensional network. For network training, the input of the neural network was defined as the damage states of the k-dimensional network facilities, and the output was defined as the network system performance. To generate training data, random sampling was performed between earthquake magnitudes of 5.0 and 7.5, and hydraulic analyses were conducted to evaluate network performance. For a hydraulic simulation, EPANET-based MATLAB code was developed, and a pressure-driven analysis approach was adopted to represent an unsteady-state network. To demonstrate the constructed surrogate model, the actual water distribution network of A-city, South Korea, was adopted, and the network map was reconstructed from the geographic information system data. The surrogate model was able to predict network performance within a 3% relative error at trained epicenters in drastically reduced time. In addition, the accuracy of the surrogate model was estimated to within 3% relative error (5% for network performance lower than 0.2) at different epicenters to verify the robustness of the epicenter location. Therefore, it is concluded that ANN-based surrogate model can be utilized as an alternative model for efficient seismic risk assessment to within 5% of relative error.
Optimum design of water distribution network(WDN) in many times means just reducing redundancy. Given only a few situations are taken into consideration for such design, WDN deprived of inherited redundancy may not work properly in some unconsidered cases. Quantifying redundancy and incorporating it into the optimal design process will be a way of overcoming just reduction of redundancy. Expected shortage is developed as a reliability surrogate in WDN. It is an indicator of the frequency, duration and severity of failure. Using this surrogate, Expected Shortage Optimization Model (ESOM) is developed. ESOM is tested with an example network and results are analyzed and compared with those from other reliability models. The analysis results indicate that expected shortage is a quantitative surrogate measure, especially, good in comparing different designs and obtaining tradeoff between cost and. reliability. In addition, compared other models, ESOM is also proved useful in optimizing WDN with reliability and powerful in controlling reliability directly in the optimization process, even if computational burden is high. Future studies are suggested which focus on how to increase applicability and flexibility of ESOM.
In this study, a novel method was proposed to test the integrity of water treatment system specifically equipped with membrane filtration process. We applied the silica particles coated with a fluorescent agent (rhodamine B isothiocyanate) as a surrogate to detect a membrane process integrity and evaluate the reliability of effluent quality in the system. Additionally, a series of experiments was conducted to evaluate the sensitivity of the method through the laboratory scale experiment. The laboratory scale experiments showed that the feasibility of application of proposed method to detect a breach or damaged part on the membrane surface. However, the sensitivity on predicting the area of a breach was significantly influenced by the testing conditions such as a concentration of surrogate, filtration flux, and detection time. The lowest error of predicting the area of breach was 3.5% at the testing condition of surrogate concentration of 80 mg/L injected with flux of $20L/m^2/hr$ for 10 minutes of detection time for the breach having the actual area of $7.069mm^2$. However, the error of estimation was increased at the small breach with area less than $0.785mm^2$. A future study will be conducted to estimate a damaged area with more accuracy and precision.
Trihalomethanes, produced as a result of chlorination of drinking water, are considered a potential health hazard. The trihalomethane formation potential (THMFP) of a raw water source may indicate the maximum trihalomethanes (THMs) that are likely to be produced when chlorine reacts with natural organic matter (NOM) present in the water. A study was conducted to evaluate the THMFP in seven different drinking water sources in the vicinity of Kalpakkam, a rural township, on the east coast of India. Water from seven stations were analysed for THMFP. THMFP was compared with surrogate parameters such as dissolved organic carbon (DOC), ultraviolet absorbance ($UV_{254}$) and bromide. The data showed that THMFP was high in water from open wells as compared to closed bore wells, possibly due to more photosynthetic activity. Proximity to sea, and consequently the levels of bromide, was an important factor that influenced THM formation. THM surrogate parameters showed good correlation with THMFP.
A novel dry and wet deposition collector, which can overcome the several problems such as water evaporation cartridge cracks and high costs founded in the previous collector systems, has been constructed. ENVI-18 SPE adsorption cartridge has been used to measure atmospheric deposition of polycylic aromatic hydrocarbons (PAHs). A surrogate surface, consisted of water and methanol, was filled in the dry deposition funnel to simulate dry deposition onto water surface. A water supply system in order to compensat evaporation of the surrogate surface was used and it was consisted of a piston pump, a tubing pump, a overflow tube and a chamber system. A novel water vaporizing system to supply water onto the wet SPE cartridge system with a constant flow rate was developed. The novel water vaporizing system, consisted of a vacuum pump, a water supply reserviour and tube and a mini space heater, could prevent the PAHs adsorption cartridge cracks occurred in the previous collector and effectively adsorb PAHs. The novel dry and wet deposition collector showed a good adsorption, desorption, and recovery rates of PAHs. By reducing the number of pumps used and employing polypyopylene (PP) instead of teflon as a material of collection funnel, the total construction costs were much reduced as compared with the previous dry and wet deposition collectors.
Fly ash, granulated blast furnace slag, marble waste powder, etc. are just some of the by-products of other sectors that the construction industry is looking to include into the many types of concrete they produce. This research seeks to use surrogate machine learning methods to forecast the compressive strength of self-compacting concrete. The surrogate models were developed using Gradient Boosting Machine (GBM), Support Vector Machine (SVM), Random Forest (RF), and Gaussian Process Regression (GPR) techniques. Compressive strength is used as the output variable, with nano silica content, cement content, coarse aggregate content, fine aggregate content, superplasticizer, curing duration, and water-binder ratio as input variables. Of the four models, GBM had the highest accuracy in determining the compressive strength of SCC. The concrete's compressive strength is worst predicted by GPR. Compressive strength of SCC with nano silica is found to be most affected by curing time and least by fine aggregate.
This study evaluated the antimicrobial effects of meat processing-related organic acids on Burkholderia thailandensis (Burkholderia pseudomallei surrogate) with different water activities. B. thailandensis KACC12027 (4 log CFU/mL) was inoculated in microwell plates containing tryptic soy broth pH-adjusted to 4, 5, 6, and 7 with ascorbic acid, citric acid, and lactic acid and with water activities adjusted to 0.94, 0.96, 0.98, and 1.0 with NaCl, followed by incubation at $35^{\circ}C$ for 30 h. The optical density (OD) of the samples was measured at 0, 3, 6, 12, 24, and 30 h at 595 nm to estimate the growth of B. thailandensis. Growth of B. thailandensis was observed only at water activity of 1.0. In general, more bacterial growth (p<0.05) was observed at pH 6 than at pH 7, and the antimicrobial effects of the organic acids on B. thailandensis were in the following order: Ascorbic acid > lactic acid > citric acid after incubation at $35^{\circ}C$ for 30 h. These results indicate that organic acids in meat processing-related formulations should be useful in decreasing the risk related to an emerging high risk agent (B. pseudomallei).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.