References
- Thallaj, N. K.; Przybilla, J.; Welter, R.; Mandon, D. J. Am. Chem. Soc. 2008, 130, 2414-2415. https://doi.org/10.1021/ja710560g
- Bokach, N. A.; Kukushkin, V. Y. Russ. Chem. Rev. 2005, 74, 153-170. https://doi.org/10.1070/RC2005v074n02ABEH000979
- Kukushkin, V. Y.; Pombeiro, A. J. L. Inorg. Chim. Acta 2005, 358, 1-21. https://doi.org/10.1016/j.ica.2004.04.029
- Larock, R. C. Comprehensive Organic Transformations, 2nd ed.; Wiley-VCH:New York, 1999; p 1988.
- Moorthy, J. N.; Singhal, N. J. Org. Chem. 2005, 70, 1926-1929 https://doi.org/10.1021/jo048240a
- Berrien, J.-F.; Royer, J.; Husson, H.-P. J. Org. Chem. 1994, 59, 3769-3774. https://doi.org/10.1021/jo00093a007
- Katritzky, A. R.; Pilarski, B.; Urogdi, L. Synthesis 1989, 949-950.
- Hall, J. H.; Gisler, M. J. Org. Chem. 1976, 41, 3769-3770.
- McIsaac, J. E., Jr.; Ball, R. E.; Behrman, E. J. J. Org. Chem. 1971, 36, 3048-3050. https://doi.org/10.1021/jo00819a034
- Merchant, K. J. Tetrahedron Lett. 2000, 41, 3747-3749. https://doi.org/10.1016/S0040-4039(00)00482-2
- Kim, E. S.; Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2010, 51, 1589-1591. https://doi.org/10.1016/j.tetlet.2010.01.063
- Kim, E. S.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2009, 50, 6286-6289. https://doi.org/10.1016/j.tetlet.2009.08.127
- Kim, E.; S.; Kim, H. S.; Kim, J. N. Tetrahedron Lett. 2009, 50, 2973-2975. https://doi.org/10.1016/j.tetlet.2009.04.007
- Lee, J.; Kim, M.; Chang, S.; Lee, H.-Y. Org. Lett. 2009, 11, 5598-5601. https://doi.org/10.1021/ol902309z
- Kim, M.; Lee, J.; Lee, H.-Y.; Chang, S. Adv. Synth. Catal. 2009, 351, 1807-1812. https://doi.org/10.1002/adsc.200900251
- Park, S.; Choi, Y.-a.; Han, H.; Yang, S. H.; Chang, S. Chem. Commun. 2003,1936-1937.
- Nirschl, A. A.; Zou, Y.; Krystek, S. R., Jr.; Sutton, J. C.; Simpkins, L. M.; Lupisella, J. A.; Kuhns, J. E.; Seethala, R.; Golla, R.; Sleph, P. G.; Beehler, B. C.; Grover, G. J.; Egan, D.; Fura, A.; Vyas, V. P.; Li, Y.-X.; Sack, J. S.; Kish, K. F.; An, Y.; Bryson, J. A.; Gougoutas, J. Z.; DiMarco, J.; Zahler, R.; Ostrowski, J.; Hamann, L. G. J. Med. Chem. 2009, 52, 2794-2798. https://doi.org/10.1021/jm801583j
- Jadhav, V. D.; Herdtweck, E.; Schmidtchen, F. P. Chem. Eur. J. 2008, 14, 6098-6107. https://doi.org/10.1002/chem.200702036
- Schade, D.; Topker-Lehmann, K.; Kotthaus, J.; Clement, B. J. Org. Chem. 2008, 73, 1025-1030. https://doi.org/10.1021/jo702150d
- Haufe, G.; Rolle, U.; Kleinpeter, E.; Kivikoski, J.; Rissanen, K. J. Org. Chem. 1993, 58, 7084-7088. https://doi.org/10.1021/jo00077a031
- Jung, S.-H.; Kohn, H. J. Am. Chem. Soc. 1985, 107, 2931-2943. https://doi.org/10.1021/ja00296a017
- Snider, B. B.; Duvall, J. R. Org. Lett. 2005, 7, 4519-4522. https://doi.org/10.1021/ol0518784
- Duvall, J. R.; Wu, F.; Snider, B. B. J. Org. Chem. 2006, 71, 8579-8590. https://doi.org/10.1021/jo061650+
- Nag, S.; Yadav, G. P.; Maulik, P. R.; Batra, S. Synthesis 2007, 911-917.
- Artuso, E.; Degani, I.; Fochi, R.; Magistris, C. Synthesis 2007, 3497-3506
- Degani, I.; Fochi, R.; Magistris, C.; Migliaccio, M. Synthesis 2009, 801-808.
- Peng, X.; Li, F.; Xia, C. Synlett 2006, 1161-1164
- Zheng, S.; Peng, X.; Liu, J.; Sun, W.; Xia, C. Helv. Chim. Acta 2007, 90, 1471-1476. https://doi.org/10.1002/hlca.200790152
- De Luca, L.; Porcheddu, A.; Giacomelli, G.; Murgia, I. Synlett 2010, 2439-2442.
- Liu, Q.; Luedtke, N. W.; Tor, Y. Tetrahedron Lett. 2001, 42, 1445-1447. https://doi.org/10.1016/S0040-4039(00)02289-9
- Lee, C. G.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 481-484. https://doi.org/10.5012/bkcs.2005.26.3.481
- Kaupp, G.; Schmeyers, J.; Boy, J. Chem. Eur. J. 1998, 4, 2467-2474. https://doi.org/10.1002/(SICI)1521-3765(19981204)4:12<2467::AID-CHEM2467>3.0.CO;2-D
- Singh, V.; Hutait, S.; Batra, S. Eur. J. Org. Chem. 2009, 3454-3466.
- Nag, S.; Mishra, A.; Batra, S. Tetrahedron 2008, 64, 10162-10171. https://doi.org/10.1016/j.tet.2008.08.044
- Wu, Y.-q.; Limburg, D. C.; Wilkinson, D. E.; Hamilton, G. S. Org. Lett. 2000, 2, 795-797. https://doi.org/10.1021/ol0055263
- Cai, T.; Xian, M.; Wang, P. G. Bioorg. Med. Chem. Lett. 2002, 12, 1507-1510. https://doi.org/10.1016/S0960-894X(02)00185-3
- Kumar, V.; Kaushik, M. P.; Mazumdar, A. Eur. J. Org. Chem. 2008, 1910-1916.
- Ghosh, H.; Yella, R.; Ali, A. R.; Sahoo, S. K.; Patel, B. K. Tetrahedron Lett.2009, 50, 2407-2410. https://doi.org/10.1016/j.tetlet.2009.03.017
- Kurokawa, M.; Shindo, T.; Suzuki, M.; Nakajima, N.; Ishihara, K.; Sugai, T. Tetrahedron: Asymmetry 2003, 14, 1323-1333. https://doi.org/10.1016/S0957-4166(03)00210-6
Cited by
- ChemInform Abstract: An Efficient Hydration of Cyanamides to Substituted Ureas with Acetaldoxime as an Effective Water Surrogate. vol.42, pp.24, 2011, https://doi.org/10.1002/chin.201124050
- A Simple Method for the Electrophilic Cyanation of Secondary Amines vol.16, pp.1, 2014, https://doi.org/10.1021/ol403245r
- (4-Methoxyphenyl)amine and its derivatives in the synthesis of O-silylurethanes, ureas, and formamides vol.87, pp.7, 2017, https://doi.org/10.1134/S1070363217070143
- nanoparticle supported ionic liquid for green synthesis of antibacterially active 1-carbamoyl-1-phenylureas in water vol.8, pp.49, 2018, https://doi.org/10.1039/C8RA04368J
- One-Pot Synthesis of 5-Hydroxypyrrolin-2-one Derivatives from Modified Morita-Baylis-Hillman Adducts via a Consecutive CuI-Mediated Aerobic Oxidation, Allylic Iodination, Hydration of Nitrile, and Lac vol.33, pp.6, 2011, https://doi.org/10.5012/bkcs.2012.33.6.2079
- Nano Cerium Oxide as a Recyclable Catalyst for the Synthesis of N-Monosubstituted Ureas with the Aid of Acetaldoxime as an effective Water Surrogate vol.37, pp.10, 2013, https://doi.org/10.3184/174751913x13787959859461
- Synthesis of N-arylureas in water and their N-arylation with aryl halides using copper nanoparticles loaded on natural Natrolite zeolite under ligand-free conditions vol.4, pp.50, 2011, https://doi.org/10.1039/c4ra03093a
- Application of TiO2 nanoparticles for the synthesis of N-arylureas in water at room temperature vol.4, pp.55, 2014, https://doi.org/10.1039/c4ra03580a
- A green and facile approach for the synthesis of N-monosubstituted ureas in water: Pd catalyzed reaction of arylcyanamides (an unexpected behavior of electron withdrawing groups) vol.151, pp.None, 2011, https://doi.org/10.1016/j.poly.2018.05.049
- Access to α‐ and β‐Hydroxyamides and Ureas Through Metal‐Catalyzed C≡N Bond Hydration and Transfer Hydration Reactions vol.2021, pp.32, 2011, https://doi.org/10.1002/ejic.202100413