• 제목/요약/키워드: Water supply resources

검색결과 891건 처리시간 0.03초

댐 운영방식에 따른 이수안전도의 비교 (Comparison of Water Supply Reliability by Dam Operation Methods)

  • 최시중;이동률;문장원
    • 한국수자원학회논문집
    • /
    • 제47권6호
    • /
    • pp.523-536
    • /
    • 2014
  • 댐의 이수안전도는 물 수요량, 저수량, 가뭄에 의한 유입량에 의해서 주로 영향을 받는다. 그러나 댐 운영방식에 따라 댐의 이수안전도는 차이가 발생할 수 있다. 우리나라의 수자원장기종합계획은 K-WEAP모형을 이용하여 댐 하류의 물부족이 발생하면 물 부족량만큼 공급하는 부족량공급(Deficit supply) 방식을 이용하고 있으나 일정방류(Prime flow) 방식을 적용하면 이수안전도가 달라질 수 있다. 본 연구의 목적은 댐 운영방식에 따른 댐의 이수안전도의 변화를 분석하는 것이다. 이들 결과는 하류의 유지유량공급, 수력 발전을 위하여 일정방류가 고려되는 환경에서 댐의 이수안전도를 재평가하는데 활용될 수 있을 것이다.

The Monthly Water Supply Reliability Indexes in the Parallel Reservoir System

  • Park, Ki-Bum;Kim, Sung-Won;Lee, Yeong-Hwa
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1612-1615
    • /
    • 2009
  • Water supply reliability indexes (WSRI) is estimated for assessment of water supply capacity in the downstream for parallel reservoir system in Nakdong River, South Korea, using allocation rule (AR) according to the water supply capacity of each reservoir and the characteristic of parallel reservoir system. The result of the analyzing parallel reservoir system for Andong and Imha reservoir in Nakdong River does not include evidences available enough to decide whether the results of water supply analysis are excellent in the current reliability evaluation or not. However, AR (C) shows a good result in the water supply capacity for each reservoir based on the connected operation system and the total water supply capacity at the control point of downstream by the average water supply capacity and possible range of water supply capacity suggested by this study. The average water supply capacity is analyzed by the reliability of monthly average water supply capacity. Furthermore, the possible range of water supply capacity is estimated by the standard deviation when water deficit occurs. Therefore, AR (C) is useful to establish and estimate the planning water supply capacity according to the monthly water supply condition and the possible range of water supply capacity when the water supply capacity deficit occurs, South Korea.

  • PDF

기후변화 시나리오를 고려한 농업용 저수지의 미래 용수공급 지속가능성 전망 (Projection of Future Water Supply Sustainability in Agricultural Reservoirs under RCP Climate Change Scenarios)

  • 남원호;홍은미;김태곤;최진용
    • 한국농공학회논문집
    • /
    • 제56권4호
    • /
    • pp.59-68
    • /
    • 2014
  • Climate change influences multiple environmental aspects, certain of which are specifically related to agricultural water resources such as water supply, water management, droughts and floods. Understanding the impact of climate change on reservoirs in relation to the passage of time is an important component of water resource management for stable water supply maintenance. Changes on rainfall and hydrologic patterns due to climate change can increases the occurrence of reservoir water shortage and affect the future availability of agricultural water resources. It is a main concern for sustainable development in agricultural water resources management to evaluate adaptation capability of water supply under the future climate conditions. The purpose of this study is to predict the sustainability of agricultural water demand and supply under future climate change by applying an irrigation vulnerability assessment model to investigate evidence of climate change occurrences at a local scale with respect to potential water supply capacity and irrigation water requirement. Thus, it is a recommended practice in the development of water supply management strategies on reservoir operation under climate change.

미래 기후변화에 따른 농업용 저수지 용수공급의 불확실성 (Uncertainty of Water Supply in Agricultural Reservoirs Considering the Climate Change)

  • 남원호;홍은미;최진용
    • 한국농공학회논문집
    • /
    • 제56권2호
    • /
    • pp.11-23
    • /
    • 2014
  • The impact and adaption on agricultural water resources considering climate change is significant for reservoirs. The change in rainfall patterns and hydrologic factors due to climate change increases the uncertainty of agricultural water supply and demand. The quantitative evaluation method of uncertainty based on agricultural water resource management under future climate conditions is a major concern. Therefore, it is necessary to improve the vulnerability management technique for agricultural water supply based on a probabilistic and stochastic risk evaluation theory. The objective of this study was to analyse the uncertainty of water resources under future climate change using probability distribution function of water supply in agricultural reservoir and demand in irrigation district. The uncertainty of future water resources in agricultural reservoirs was estimated using the time-specific analysis of histograms and probability distributions parameter, for example the location and the scale parameter. According to the uncertainty analysis, the future agricultural water supply and demand in reservoir tends to increase the uncertainty by the low consistency of the results. Thus, it is recommended to prepare a resonable decision making on water supply strategies in terms of using climate change scenarios that reflect different future development conditions.

MIP에 의한 댐군연계운영 최적화모형 개발과 개발 모형에 의한 낙동강수계 용수공급능력 재평가 (Development of Optimal Reservoir System Operation Model for Water Supply by Applying MIP Technique and Reappraisal of Water Supply Capability of Nakdong River Basin)

  • 최영송;안경수;박명기
    • 한국수자원학회논문집
    • /
    • 제33권4호
    • /
    • pp.447-459
    • /
    • 2000
  • 수자원 개발이 인문 사회적 여건으로 날로 어려워짐에 따라 공급위주의 물 관리 정책이 한계에 달하고 이어 수요관리개념에 따른 적용 가능한 수자원관리 기법의 개발이 필요해지고 있다. 무효방류량을 최소화하여 한정된 물 자원 배분을 합리적으로 이룰 수 있는 실제 적용 가능한 수요관리기법은 수자원의 효율적 이용과 유역물관리 시스템의 방법론적 완성을 위해 반드시 필요하다. 본 연구는 기존의 물수지분석 기법을 댐 연계운영 모형과 조합하여 MIP 기법에 의해 이수목적 다목적댐 최적연계운영모형을 개발하고 낙동강 수계를 대상으로 모형의 적용성에 대한 검증을 실시하였으며 낙동강 수계의 용수공급능력을 재평가하였다. 이 결과를 계획 당시 자료 및 다른 모형에 의한 운영결과와 비교한 바 개발된 모형은 훌륭히 물 부족량 공급방식으로 수계의 물 공급을 보장할 수 있고 기존 모형등에 의한 방식보다 물배분과 관리에 효율적으로 활용 될 수 있음이 평가되었다.

  • PDF

수자원(水資源) 오염 특성에 의한 불량매립지(不良埋立地) 예비평가모형(豫備評價模型) 정립 (Establishment of Landfill Site Preliminary Assessment Model Based on Contamination Characteristics of Water Resources)

  • 홍상표;김정욱
    • 환경영향평가
    • /
    • 제4권1호
    • /
    • pp.17-23
    • /
    • 1995
  • To assess preliminarily the contamination potential of water resources including groundwater owing to the hydrogeological characteristics of landfill site and the potential impact to humans and animals through contamination of water resources by leachate, "Landfill Site Preliminary Assessment Model(LASPAS)" was contrived. LASPAS could help them proritization of remediation of landfil sites by the convenient and relatively simple evaluation method of landfill site features. LASPAS was designd to aliot numerical ratings to landfill site related factors undermentioned; 1) hydrogeological factors such as hydraulic conductivity of aquifer, thickness of confining layer over aquifer, topographical slope, net recharge, and subsurface containment 2) water resources contamination factors of impacts on receptors such as proximity to drinking water supply, substitutability of drinking water supply, type of use of water resources, known impact on drinking water supply, and flood potential.

  • PDF

농업용 저수지 공급량과 수요량의 확률분포 및 신뢰성 해석 기법을 활용한 물 공급 취약성 평가 (Vulnerability Assessment of Water Supply in Agricultural Reservoir Utilizing Probability Distribution and Reliability Analysis Methods)

  • 남원호;김태곤;최진용;이정재
    • 한국농공학회논문집
    • /
    • 제54권2호
    • /
    • pp.37-46
    • /
    • 2012
  • The change of rainfall pattern and hydrologic factors due to climate change increases the occurrence probability of agricultural reservoir water shortage. Water supply assessment of reservoir is usually performed current reservoir level compared to historical water levels or the simulation of reservoir operation based on the water budget analysis. Since each reservoir has the native property for watershed, irrigation district and irrigation water requirement, it is necessary to improve the assessment methods of agricultural reservoir water capability about water resources system. This study proposed a practical methods that water supply vulnerability assessment for an agricultural reservoir based on a concept of probabilistic reliability. The vulnerability assessment of water supply is calculated from probability distribution of water demand condition and water supply condition that influences on water resources management and reservoir operations. The water supply vulnerability indices are estimated to evaluate the performance of water supply on agricultural reservoir system, and thus it is recommended a more objective method to evaluate water supply reliability.

수자원시스템의 용수공급량 결정방법의 문제점 분석 (Analysis of Problems of Water Supply Capacity Determination in Water Resources Systems)

  • 이광만;이재응
    • 한국수자원학회논문집
    • /
    • 제47권4호
    • /
    • pp.331-342
    • /
    • 2014
  • 수자원 계획에 있어 적정 용수공급량(계획공급량)을 결정하는 것은 매우 중요한 문제이다. 댐과 같은 중요 수자원시설물의 경우 한번 계획이 결정되면 이후 수십년간 국가 수자원 환경 전반에 영향을 미치게 된다. 실제 1980년대 이후, 보다 체계화된 수자원 계획이 시행되었음에도 여러 가지 문제점들이 내포되어 있는 것으로 지적되고 있다. 특히 대부분의 댐에 적용되어온 신뢰도 지표의 분석방법이나 기준에 대한 문제점이 지속적으로 제기되고 있다. 본 연구는 수자원시스템의 용수공급량 결정방법의 신뢰도 지표 문제점을 진단하고 적정 적용방안을 제시하고자 하였다. 분석결과, 기간신뢰도의 경우 분석시간단위에 따른 차이는 크지 않았으며, 분석시간단위와 평가단위시간을 달리할 경우 큰 차이를 보였다. 양적신뢰도는 기간신뢰도보다 2~3% 큰 값을 보이며, 회복도와 취약도 역시 분석시간단위에 따라 차이를 보였다.

Decision Support System for the Water Supply System in Fukuoka, Japan

    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2001년도 학술발표회 논문집(I)
    • /
    • pp.15-24
    • /
    • 2001
  • This study introduces an integrated decision support system (DSS) for the water supply system in Fukuoka City, Japan. The objective is to conceive a comprehensive tool that may aid decision-makers to derive the best water supply alternatives from a multi-reservoir system in order to minimize the long-term drought damages and threat of water shortage. The present DSS consists of graphical user interface (GUI), a database manager, and mathematical models for runoff analysis, water demand forecasting, and reservoir operation. The methodology applied explicitly integrates the drought risk assessment based on the concept of reliability, resiliency, and vulnerability, as constraints to derive the management operation. The application of the DSS to the existing water supply system in Fukuoka City was found to be an efficient tool to facilitate the examination of a sequence of water supply scenarios toward an improved performance of the actual water supply system during periods of drought.

  • PDF

EVALUATION OF THE WATER RESOURCES ASPECT OF THE OPERATING RESULTS OF THE DAECHEONG MULTIPURPOSE DAM

  • Noh, Jaek-young
    • Water Engineering Research
    • /
    • 제5권1호
    • /
    • pp.17-36
    • /
    • 2004
  • This paper evaluated the water resources aspect of the operating results of the Daecheong Multipurpose Dam for the last 21 years. The elements that were evaluated included the amount of water supply from the dam. volume of outflow from the regulating dam, changes in the runoff volume at the dam site and downstream, and variations in the water supply capacity of the Daecheong Multipurpose Dam and the Geum River Barrage Dam situated in the estuary. The rainfall-runoff model was used to evaluate the changes in the runoff volume, and the water balance analysis system was used to evaluate the variations in the dams'water supply capacities. The volume of domestic and industrial water supply from the Daecheong Multipurpose Dam increased to 6.1 times for the last 21 years from 61${\times}$$10^6$$m^3$ in 1981 to 375${\times}$$10^6$$m^3$in 2001. The rate of outflow to inflow of the Daecheong Dam was analyzed 1.30 times in dry season, 1.12 times in semi-dry season, and 0.90 times in rainy season. The volume of inflow to the Geum River Barrage Dam down- stream after the dam's construction increased to 1.25 times in dry season and 1.02 times in semi-dry season and decreased to 0.94 times in rainy season. The water supply capacity of the estuary barrage dam almost did not change in cases with or without the Daecheong Multipurpose Dam, but storages were largely affected by the outflows of the Daecheong Multipurpose Dam.

  • PDF