• 제목/요약/키워드: Water retention capacity

검색결과 207건 처리시간 0.018초

히드록시알킬 메틸셀룰로오스가 시멘트 모르타르의 보수성에 미치는 영향에 관한 연구 (Study on the Factor of Water Retention Capacity of Cement Mortar by Hydroxyalkyl Methylcellulose Ether)

  • 이무진
    • 콘크리트학회논문집
    • /
    • 제11권3호
    • /
    • pp.153-160
    • /
    • 1999
  • Water soluble hydroxyalkyl methycellulose ethers are used in a variety of applications incluing building industry as a supplementary agent used for incresing adhesives, water retention capacity, workability and viscosity modify. Water retention capacity(WRC) is the capability to contain water in the ploymer chain under condition of being mixed with cement. In general, the WRC is affected by the viscosity, the adding amount, the particle size, the rate of dissolving and the amount of substituted chemical in cellulose ethers. In the other words, WRC is increased as higher the viscosity, more adding amount, finer the particle size and longer the dissolving time of cellulose ethers. This thesis investigated each factor that effect the WRC, particularly the relation between degree of substitution(DS), molar of substitution(MS) and WRC. It is observed that WRC is not nearly affected by DS of cellulose ethers, but is changes proportionally as MS increases in the narrow range(0.10~2.25)

활엽수 낙엽의 수분저류 특성에 대한 실험적 분석 (Experimental Analysis of Water Retention Characteristics in the Litter of Different Deciduous Trees)

  • ;최형태;이은재;임상준
    • 한국환경복원기술학회지
    • /
    • 제19권2호
    • /
    • pp.83-93
    • /
    • 2016
  • This study purposed to examine the water retention capacity of floor litter in deciduous forests. Water holding capacity(WHC) and interception storage capacity of Alnus hirsuta Turcz. ex Rupr., Quercus acutissima, Quercus mongolica litters were experimentally estimated. Physical characteristics of litters were also obtained to understand the relationships between water-retention capacity and litter characteristics. Experiments showed that WHC increases with specific volume of litter, varying 244.4% to 416.8% of its dry mass. Interception storage have estimated with rainfall simulation experiments. Maximum interception storage ($C_{max}$) and minimum interception storage ($C_{min}$) of litters were 220% and 138% of dry mass in Alnus hirsuta Turcz. ex Rupr., 218% and 137% in Quercus acutissima, and 240% and 156% in Quercus mongolica. Both $C_{max}$ and $C_{min}$ increased linearly with litter mass, and the values of $C_{min}$ in broadleaf litters have also linear relation to leaf area.

지리산국립공원 내 조릿대 임분의 수원함양기능 분석 (Analysis of Water Retention Capacity at Sasa borealis Stands in Jirisan National Park)

  • 지형우;박재현
    • 한국환경복원기술학회지
    • /
    • 제11권3호
    • /
    • pp.1-11
    • /
    • 2008
  • Although landslides were frequently occurred under Tripterygium regelii and Rubus sp. vegetations, the damage of landslide was not observed in sasa (Sasa borealis) stands. These phenomena may be affected by forest vegetation types. This result suggested that the landslide occurred in Jirisan (Mt.) National Park may be closely related to water retention capacity at Sasa borealis stands. This study compared and analyzed the water retention capacity of each soil horizon of sasa, larch (Larix leptolepis) and mongolian oak (Quercus mongorica) stands. Soil bulk density in A horizon was lower in sasa (0.776g/$cm^3$) than in mongolian oak (0.828g/$cm^3$) and in larch stands (1.282g/$cm^3$). Water permeability in A horizon was 0.02055cm/sec for sasa, 0.00575cm/sec for mongolian oak, and 0.0007cm/sec for larch stands, respectively. The water permeability of sasa stand was about 3.6 times and about 29 times higher than in mongolian oak and in larch stands, respectively. This result indicates that water infiltration of soil surface during a rain event is more rapid in sasa than in other two stands. Soil organic matter content in B horizon was lower in larch (0.7%) than in mongolian oak (6.5%) and in Sasa (3.3%) stands. The solid ratio in A horizon was highest in larch among three stands, but that of mongolian oak and larch stands showed a similar rate. Pore space rates was 70.7% for A horizon and 70.6% for B horizon of sasa, 68.9% for A horizon and 70.6% for B horizon of sasa, 68.9% for A horizon and 70.6% for B horizon of mongolian oak forests and 51.7% for A horizon and 49.2% for B horizon of larch forests, respectively. According to pore space rates, the water retention capacity may be poor in larch stand compared with other two stands. Soil strength in sasa and mongolian stands was over 25kgf/$cm^2$ from 40cm depth, while the strength was over 25kgf/$cm^2$ from 25cm depth in larch stand. The result indicates that tree growth and water permeability in larch stand could be limited due to high soil strength. Larch stand was poor for soil pore space development to be offered to the water retention capacity, but water retention capacity of A horizon soil in sasa stand was high than that of other two stands. Therefore, establishment of sasa stand under larch stand could help to prevent landslides.

Effects of Compost and Gypsum on Soil Water Movement and Retention of a Reclaimed Tidal Land

  • Lee, Jeong-Eun;Yun, Seok-In
    • 한국토양비료학회지
    • /
    • 제47권5호
    • /
    • pp.340-344
    • /
    • 2014
  • Compost and gypsum can be used to ameliorate soil physicochemical properties in reclaimed tidal lands as an organic and inorganic amendment, respectively. To evaluate effects of compost and gypsum on soil water movement and retention as a soil physical property, we measured the soil's saturated hydraulic conductivity and field capacity after treating the soil collected in a reclaimed tidal land with compost and gypsum. Saturated hydraulic conductivity of soil increased when compost was applied at the conventional application rate of $30Mg\;ha^{-1}$. However, the further application of compost insignificantly (P > 0.05) increased saturated hydraulic conductivity. On the other hand, additional gypsum application significantly increased soil saturated hydraulic conductivity while it decreased soil field capacity, implying the possible effect of gypsum on flocculating soil colloidal particles. The results in this study suggested that compost and gypsum can be used to improve hydrological properties of reclaimed tidal lands through increasing soil water retention and movement, respectively.

Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs

  • Razak, Okine Abdul;Masaaki, Hanada;Yimamu, Aibibula;Meiji, Okamoto
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권4호
    • /
    • pp.471-478
    • /
    • 2012
  • The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, 'potential water retention capacity' (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer's grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (${\pm}10.3$). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship.

유럽표준배지분석법에 의한 원예용 유기·무기성 배지의 수분보유특성 (Determination of Water Retention Characteristics of Organic and Inorganic Substrates for Horticulture by European Standard Method)

  • 강지영;박순남;이현행;김계훈
    • 한국토양비료학회지
    • /
    • 제37권2호
    • /
    • pp.55-58
    • /
    • 2004
  • 본 연구에서는 국내에서 사용중인 몇 가지 원예용 배지재료의 수분특성을 유럽표준배지분석법에 따라 수분보유곡선을 작성함으로써 살펴보았다. 유기성배지로는 피트모스, 코이어, 바크, 톱밥, 생왕겨를 사용하였고. 무기성배지로는 펄라이트. 팽화 버미큘라이트, 입상암면, 클레이볼을 사용하였다. 수분특성곡선은 유럽표준배지분석법을 사용하여 수두 변화에 따른 수분함랑(v/v)으로 작성하였다. 유기성배지 중 피트와 코이어는 유사한 수분특성을 나타내었으며 쉽게 이용 가능한 수분함량 (easily available water)이 30% 이상으로 식물생육에 적합한 보수성을 나타내었다. 반면 바크, 톱밥, 생왕겨와 무기성 배지들은 -10 cm의 낮은 수두하에서도 보유되는 수분함량이 매우 낮았고 식물이 쉽게 이용 가능한 수분함량 또한 매우 낮아 통기성은 충분하나 보수력이 부족하여 작물재배시 수분부족현상이 자주 발생할 것으로 보였다. 한편. 원예용 배지는 같은 종류의 배지라도 원산지에 따라 수분 특성에 차이를 보였으며, 입자가 미세하고, 시비 또는 부숙처리를 가한 것일수록 높은 수분보유능력을 나타내었다.

SPATIAL AND TEMPORAL INFLUENCES ON SOIL MOISTURE ESTIMATION

  • Kim, Gwang-seob
    • Water Engineering Research
    • /
    • 제3권1호
    • /
    • pp.31-44
    • /
    • 2002
  • The effect of diurnal cycle, intermittent visit of observation satellite, sensor installation, partial coverage of remote sensing, heterogeneity of soil properties and precipitation to the soil moisture estimation error were analyzed to present the global sampling strategy of soil moisture. Three models, the theoretical soil moisture model, WGR model proposed Waymire of at. (1984) to generate rainfall, and Turning Band Method to generate two dimensional soil porosity, active soil depth and loss coefficient field were used to construct sufficient two-dimensional soil moisture data based on different scenarios. The sampling error is dominated by sampling interval and design scheme. The effect of heterogeneity of soil properties and rainfall to sampling error is smaller than that of temporal gap and spatial gap. Selecting a small sampling interval can dramatically reduce the sampling error generated by other factors such as heterogeneity of rainfall, soil properties, topography, and climatic conditions. If the annual mean of coverage portion is about 90%, the effect of partial coverage to sampling error can be disregarded. The water retention capacity of fields is very important in the sampling error. The smaller the water retention capacity of the field (small soil porosity and thin active soil depth), the greater the sampling error. These results indicate that the sampling error is very sensitive to water retention capacity. Block random installation gets more accurate data than random installation of soil moisture gages. The Walnut Gulch soil moisture data show that the diurnal variation of soil moisture causes sampling error between 1 and 4 % in daily estimation.

  • PDF

도시 물 순환 개선을 위한 생태저류지의 최적설계용량 결정 (Determination of Optimum Design Capacity of Bio-retention for Improvement of Urban Water Cycle)

  • 이옥정;최정현;이정훈;김상단
    • Korean Chemical Engineering Research
    • /
    • 제55권6호
    • /
    • pp.745-753
    • /
    • 2017
  • 본 연구에서는 도시 개발에 따라 왜곡된 도시 물 순환을 LID 시설을 통하여 자연적인 물 순환으로 되돌리고자 하는 설계전략이 제안된다. 이는 도시 개발 전과 후의 유황곡선이 동일하게 유지되는 최적의 LID 시설 설계용량을 결정함으로서 구현된다. 부산 녹산 국가산업단지의 일부지역이 연구대상지역으로 선정되었으며, 다양한 토지이용시나리오 및 LID 시설 설계용량에 대한 강우유출수 모의를 위하여 EPA SWMM이 구축되었다. 연구대상지역이 개발이전에 임야지역 또는 농경지역이라 가정하였을 경우, 도시 개발 이후에도 유황곡선이 도시 개발 전과 동일하게 유지되기 위해서는 불투수지역의 7.3% 또는 5.5%를 생태저류지의 면적으로 할당해야 함을 확인하였다. 또한 지역별 강우특성에 따른 생태저류지 설계용량의 민감도 분석을 수행한 결과, 농경지역의 개발 시에는 불투수지역의 3.8~5.5% 정도의 설계용량이 필요한 것으로 나타남에 따라 지역별 강우특성에 따라 생태저류지의 최적용량이 유의하게 달라질 수 있음을 살펴볼 수 있었다. 반면에, 생태저류지 각 층별 깊이의 변화에 따른 설계용량의 민감도 및 처리대상구역의 크기에 따른 민감도를 분석한 결과, 생태저류지의 설계 제원 및 처리대상구역의 크기에 따른 최적설계용량의 민감도는 크지 않은 것으로 나타났다.

상재하중과 점토함유량이 불포화 풍화토의 함수특성에 미치는 영향 (Effects of Overburden Pressure and Clay Content on Water Retention Characteristics of Unsaturated Weathered Soils)

  • 박성완;박재영;태두형;심영종
    • 대한토목학회논문집
    • /
    • 제30권1C호
    • /
    • pp.53-63
    • /
    • 2010
  • 함수특성곡선은 불포화지반의 거동을 분석하는데 있어서 매우 중요한 물성으로 활용되고 있으나 많은 경우 상재하중과 세립분의 영향을 고려하지 않은 상태에서 측정되어 적용해 왔다. 따라서 본 논문에서는 국내의 대표적인 풍화토를 대상으로 상재하중과 점토의 함유량에 따른 함수특성 영향을 살펴보았다. 상재하중, 세립분, 그리고 이력 조건을 고려하여 함수특성과 불포화 투수계수를 SWCC 시험결과를 토대로 평가하였다. 또한 불포화시 습윤용적과 확산능력에 대하여도 살펴보았다.

비이온계 계면활성제 수용액에서 Polyester/Cotton(65/35) 오염포의 습윤특성과 세척성 (Detergency and Liquid Wetting/Retention Properties of Soiled Polyester/Cotton(65/35) Cloth in Nonionic Surfactant Solutions)

  • 김천희
    • 한국염색가공학회지
    • /
    • 제23권2호
    • /
    • pp.140-145
    • /
    • 2011
  • The effects of nonionic surfactant solutions of 0.1g/dL on detergency and liquid wetting/retention properties of soiled polyester/cotton(65/35) cloth were studied. Soiled polyester/cotton(65/35) cloth (EMPA 104) and 10 different nonionic surfactants (Span 20, Tween 20, 40, 60, 80, 21, 61, 81, 65, 85) were used in the study. The water retention and liquid retention capacity values of soiled cloth were decreased compared with those of unsoiled cloth. The wetting and water retention of soiled cloth improved with addition of surfactants, whereas water retention ratio(W/H) values didnot change markedly. Generally surfactants with low surface tension and high HLB (Hydrophile-lipophile balance) were more effective in improving the wetting/retention properties of soiled cloth. Nonionic surfactants having high ethylene oxide contents of 20 moles; i.e., Tween 20, 40, 60 & 80, showed better detergency than low ethylene oxide contents of 4 moles; i.e., Tween 21, 61 & 81. As HLB values of surfactants and $cos{\theta}$ of the soiled cloth increase, the detergency values of soiled cloth increased.