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SPATIAL AND TEMPORAL INFLUENCES ON
SOIL MOISTURE ESTIMATION
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Abstract: The effect of diurnal cycle, intermittent visit of observation satellite, sensor installation, partial coverage of
remote sensing, heterogeneity of soil properties and precipitation to the soil moisture estimation error were analyzed to
present the global sampling strategy of soil moisture. Three models, the theoretical soil moisture model, WGR model
proposed Waymire ef al. (1984) to generate rainfall, and Turning Band Method to generate two dimensional soil porosity.
active soil depth and loss coefficient field were used to construct sufficient two-dimensional soil moisture data based on
different scenarios.

The sampling error is dominated by sampling interval and design scheme. The effect of heterogeneity of soil properties
and rainfall to sampling error is smaller than that of temporal gap and spatial gap. Selecting a small sampling interval
can dramatically reduce the sampling error generated by other factors such as heterogeneity of rainfall, soil properties,
topography, and climatic conditions. If the annual mean of coverage portion is about 90%, the effect of partial coverage
to sampling error can be disregarded. The water retention capacity of fields is very important in the sampling error. The
smaller the water retention capacity of the field (small soil porosity and thin active soil depth), the greater the sampling
error. These results indicate that the sampling error is very sensitive to water retention capacity. Block random installati
on gets more accurate data than random installation of soil moisture gages. The Walnut Gulch soil moisture data

show that the diurnal variation of soil moisture causes sampling error between 1 and 4 % in daily estimation.
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INTRODUCTION Rind (1982) concluded that, “knowledge of the

ground moisture at the beginning of the summer

Soil moisture plays an important role in sev- might allow for improved summer temperature

eral ranges of hydrological processes including forecasts”

geomorphic processes (Beven and Kirkby, 1993), During the last decade, several experiments
runoff and flooding processes (Kitanidis and
Bras, 1980), soil moisture-rainfall feedback
mechanisms (Eltahir, 1998), land-atmosphere
interactions (Entekhabi et al., 1996), and linkage

between the hydraulic cycle and the energy cy-

have been conducted to collect and analyze time
series of point and spatially distributed hydro-
logic data, focusing on soil moisture and evapo-
rative fluxes using both conventional and remote
sensing methods. Recent advances in low- fre-

cle through evapotranspiration (Lin ef al. 1994). quency microwave remote sensing may provide

This is particularly true in the mid-latitudes and direct measurement of surface soil moisture
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under various topographic and land cover condi-
tions within reasonable error bounds (Engman,
1990; Jackson and Le Vine, 1996). To estimate
the hydrologic variables such as soil moisture or
rainfall in global-scale the satellite remote sens-
ing is essential. The sampling errors depend on
the observation design and on the spatial and
temporal variability of the soil moisture field
itself. Therefore to design the appropriate sam-
pling strategies, it is necessary to analyze those
factors which impact soil moisture sampling.
In this study, the impact of diurnal cycle, topog-
raphy, soil properties, vegetation, and climatic
condition on the sampling of the soil moisture
field was analyzed to decide a convincing ap-
proach to the global measurement of soil mois-
ture field.

Densely measured soil moisture data shows a
definite diurnal cycle, which causes critical
sampling error in daily sampling. The Walnut
Gulch data were used to analyze the diurnal
impact on daily sampling of the soil moisture
field. Even though there are enough point
measurement within the soil moisture field to
analyze the diurnal impact on daily sampling of
soil moisture, we do not have two-dimensional
soil moisture data to analyze the spatial and
temporal sampling effect. Even though the
SGP ’97 soil moisture data were gathered in
large experimental domain for 29days, thirteen
days’ soil moisture data of them are not
available since weather condition and
calibration problem. Therefore SGP ’97 soil
moisture data is not suitable to analyze the
spatial and temporal sampling design of soil
moisture field. Three models, the theoretical soil
WGR  model
Waymire et al. (1984) to generate rainfall, and
Turning Band Method
dimensional soil porosity, active soil depth and

moisture  model, proposed
to generate two

loss coefficient field were used to construct
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construct sufficient two-dimensional soil mois-

ture data based on different scenarios.

2. IMPACT OF DIURNAL CYCLE ON
THE MONSOON 90 SOIL MOISTURE
MEASUREMENT

The Walnut Gulch experimental watershed is
explained in chapter 2. More extensive informa-
tion on the experimental data and watershed can
be found in Schmugge ef al. (1994). Two main
experimental subwatersheds, Lucky Hills and
Kendall were more intensely monitored. The
Kendall study area is grass dominated and the
Lucky Hills study area is covered predominantly
with brush. The remotely sensed soil moisture
data obtained on a daily basis does not mimic
the diurnal cycle. The half-hourly measurements
of soil moisture from resistance sensors were
used to analyze the diurnal impact.

Ground-based measurements of soil moisture,
ten at Lucky Hill, three at Kendall North, and
two at Kendall South were used to analyze the
diurnal impact and the effect of the temporal gap
on soil moisture sampling. The data contami-
nated by noise were discarded for this study.
The diurnal cycle on the Lucky Hills study area
presented a very clear diurnal cycle. The Kend-
all experimental site dominated by grass did not
show the apparent diurnal cycle.

Fig. 1 shows that the error of daily sampling
has a cyclic pattern between 1 % and 4 %, and
the error of daily sampling (remote sensing from
satellite or airplane) is affected by the diurnal
cycle. The daily sampling error between 5 am
and 8 am is at a low of 1% while the daily sam-
pling between 1 p.m. and 3 p.m. indicate a sam-
pling error on the order of 4%. The impact of
the temporal gap to the soil moisture sampling
was also analyzed from the Walnut Gulch data.
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Fig. 1. The impact of diurnal cycle on daily sampling of soil moisture data
(use Walnut Gulch data)
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Fig. 2. The impact of temporal gap on sampling of soil moisture data
(Walnut Gulch data)

Fig. 2 shows that the mean and standard devia- 3. SIMULATION STUDY

tion of sampling error increased linearly by in- .
. ping y oy To analyze the effect of topography, soil

creasing temporal gap. . . o ..
properties, vegetation, climatic condition and

partial coverage on the sampling of the soil



34

moisture field, a substantial amount of soil
moisture data sets are required for each case.
There are actually insufficient data on two di-
mensional soil moisture to conduct a spatial and
temporal sampling analysis. The lack of tempo-
ral coverage of the SGP 97 soil moisture data
has limitation in analysis of the spatial-temporal
sampling design of soil moisture field. —We
used three different models to generate suffi-
cient two dimensional soil moisture filed with
different hydrometeorological scenarios.

3.1 Model for the soil-moisture dynamics

Entekhabi and Rodriguez-Iturbe (1994) had
proposed a theoretical model of soil moisture
based on the linear reservoir concept, which
considered the diffusion effect on soil moisture
propagation in space. The model for the soil
moisture field consists of three major factors.
The loss term represents the temporal evolution
dominated by decay process caused by various
processes such as evapotranspiration, infiltration,
and surface runoff. The diffusion term repre-
sents the spatial interaction of the soil moisture
field through both the porous media as well as
the surface water flow. The diffusion effect is
significant during storm periods and is almost
negligible during an inter-storm period. The
movement of soil moisture by diffusion is not a
process similar to that of omni-directional diffu-
sion of pollutants in a lake. The diffusion of soil
moisture during storm period is affected by the
topography. Therefore direction parameter was
introduced, which decide the direction of diffu-
sion behavior from digitized elevation model
(DEM) data. The direction parameter can con-
sider the topographic effect on spatial character-
istic of soil moisture behavior. The diffusion
process is divided to two states 1) where the soil
moisture approaches saturation 2) where surface
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flows directly above the already saturated soil.
The direction parameter is used to handle the
amount of the spatial movement of surface flow
above saturated soil moisture. The Monsoon *90
data showed the clear diurnal cycle in temporal
behavior of soil moisture field. Therefore, a di-
urnal cycle term is introduced to analyze the
diurnal impact of the soil moisture field. The
fourth term, rainfall forcing is a unique source
of soil moisture field. This model followed the
stochastic differential equation, where stochas-
ticity was introduced by considering the random
rainfall field as driving force. The equation was
as follows

,,Zr%=—m+an(/cdst)+Assin(a)t+r)+P

(D

where n is the soil porosity, Z, is the depth of the
surface soil layer, 7 is loss coefficient, x is dif-
fusion coefficient, d is direction parameter, 4 s
sin(wt+7) and P is the rainfall field as a noise
forcing.

Soil moisture dynamics has the same form as
the spatial evolution for crop yield (Whittle,
1962). Entekhabi and Rodriguez-Iturbe (1994)
statistically analyzed the model with the as-
sumption of constant parameters, but weather
conditions, topography, vegetation and land use
affect both parameters. In this research, loss
coefficient, soil porosity and active soil depth
fields were generated by the model parameter
estimated from the SGP ’97 and Washita ’92
data.

Multivariate regression analysis was used to
estimate the loss coefficient and diffusion coef-
ficient. Loss coefficient, 7=0.03m/day with po-
rosity, n=0.46 was tuned from SGP ’97 data.
Active soil depth is used as Z,=0.5m assumed by
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Table 1. Description of the WGR model parameters and (a) the estimates of the WGR model
parameter from June to August 1997 on the selected sites of the SGP ’97 experi-
mental region, (b) the estimates of the WGR model parameter over winter season on

the Brazos Valley, Texas.

Parameters Definition _ Unit Range
D Rainfall intensity spatial attenuation parameter. Km 1.0-5.0
c Cell location parameter Km -
u Rain band speed relative to ground Km/hr 30
P Mean density of cluster potential cluster/km?2 0.01-0.001
v Mean number of cells per cluster - 2.0-8.0
i) Cellular birth rate 1/hr 0.06-6.0
a Mean cell age 1/hr 0.6-6.0
A Mean rain band arrival 1/hr 0.06-0.0006
Parameter A p \Y o B i
set (storms/hr)  (CPCs/km2) (cells/CPC) (1/hour) (cells’hour) (mm/hr)  SSQ
. . El Reno (SGP ’97)
(a) 0.0153 0.0055 6.50 4.90 0.7886 71.8  0.0429
Wheelock (Texas)
(b) 0.0078 0.0034 5.10 2.04 0.3840 60.0  0.0100

Table 1. Georeferencing information of selected porosity and DEM fields

(Projection : Universal Transverse Mercator Zone 145)

Site 1 Site 2 Site 3
543600 E 567600 E 591600 E
Upper left corner

3914600 N 4017000 N 4119400 N

, 646000 E 670000 E 694000 E
Upper right comer 3914600 N 4017000 N 4119400 N
Lower left commet 543600 E 567600 E 591600 E
3812200 N 3914600 N 4017000 N

, 646000 E 670000 E 694000 E

Lower right cornet 3812200 N 3914600 N 4017000 N

Entekhabi and Rodriguez-Iturbe (1994). The soil

moisture field behavior is dominated by
precipitation forcing and decay process caused
The

regression analysis shows the spatial interaction

by evapotranspiration and infiltration.

represented by diffusion term is very small. The

resented by diffusion term is very small. The
estimates of the diffusion parameter x under two
different hydrologic conditions, storm period

and inter-storm period are calculated by using
x=(v’t)/ 4. Typical velocity associated with
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the front advance is about 20cm/day. The in-
terstorm period, t, is about 48hours. From these
values, the lower bound of the parameter x is
10°m%h. The velocity of the overland flow
ranges about few to tens of cm/s. Storm duration
was assumed to be approximately 6hours. From
these values, the upper bound of parameter x
was 10°’m%h (Entekhabi and Rodriguez-Iturbe,
1994). The diffusion coefficient, x=0.001m’
hour was applied for unsaturated region and x
=10°m?¥h was used to treat moisture over poros-

ity.

3.2 Rainfall model

The WGR model (Waymire ef. al., 1984) was
developed to represent mesoscale precipitation.
As a conceptual model, this model shows a good
link between atmospheric dynamics and a statis-
tical description of mesoscale precipitation. The
description of the rainfall model was described
in chapter 4. The parameters of the WGR model
represent the physical features in mesoscale
precipitation and can also represent spatially
elongated precipitation field, which is an ob-
served characteristic of rainfall fields. This con-
ceptual model also shows good stochastic rep-
resentation of rainfall events in space and time,
but has a complex framework, which requires
the estimation of many parameters. The WGR
model parameters were estimated from Okla-
homa Mesonet data during the SGP 97 experi-
ment. The WGR model parameters estimated
over the Brazos Valley in Texas were also used
to generate rainfall field (Koepsell et al., 1989).
The WGR model parameters in Table 2 were
used to generate the rainfall field.

3.3 Turning bands method
Generation of multidimensional random fields
via the Turning Bands Method (TBM) was pre-
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sented by Mantoglou and Wilson (1982). The
basic concept of this method is to reduce a
multidimensional simulation into the sum of a
series of equivalent unidimensional simulation.
The mean, m, the variance, sz, and the spatial
covariance function, C(x;, x;), of the parameter
to be generated are pre-specified in this methods
and second order stationarity is assumed in this
process, i.¢.,

1. the mean is independent for all position of
each point in space R"

E{Z(x)]=m(x)=m, VxeR" Q)

where R" is n dimensional space

2. the covariance function C(x,, x;) is dependent
on the vector difference d = x; — x; and not on
any particular vector of each point

C(x,,x,)=C(x,~x,)=C(d) (3)

Let P is the region in which it is desired to
simulate a two-or three-dimensional field, Turn-
ing Bands lines are generated at any origin, O,
in R".

Turing Band lines are generated such that the
corresponding direction unit vectors, u«, are uni-
formly distributed on a unit circle or sphere de-
pending on whether a two- or three- dimensional
field is generated. Along each line, a second
order stationary one-dimensional process is
generated with zero mean and covariance func-
tion C;(J), where J is the coordinate on line .
The points in region P where values are to be
generated are projected orthogonally onto the
line i and the corresponding values of the one
dimensional discrete process are assigned. If
Zi(y) is the assigned value for any point N in
the region P from the line process and if L lines
of simulated value for point N is given by :



Water Engineering Research, Vol. 3, No. 1, 2002 37

Generate several fields of
Generate soil moisture field

porosity, topology,
active soil depth, loss coefficient

Generate rainfall field

Sampling

Partial coverage of sampling domain

Remote sensing
at remote sensing

from satellite and airplane

AN

N

. . . Discrete samplin
Soil moisture gage design ] ping
in space and time

Fig. 3. Schematic diagram of simulation study, The standard procedure is 1. to generate the
soil properties, elevation, loss coefficient and diffusion coefficient 2. to generate rainfall
data with tuned parameter from experimental data 3. to generate soil moisture field 4.
to analyze the impact of field conditions, sampling design, partial coverage by using

simulated soil moisture field
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Fig. 6. (a) Sampling error regarding partial coverage between 23% and 95%,
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Fig. 10. Sampling error regarding different loss coefficients

Z.(Xy)= %Z Z,(x, u,) “)

where xyis the location of the point N, u; is the
vector on line i, and xyu; is the projection of
the vector x; onto the line 7.

Several forms of the covariance function such
as exponential, exponential spherical, Bessel
and Telis function were used in TBM (Man-
toglou and Wilson, 1982). The exponential co-
variance function, which has been used in this

study, is of the form

5 2 2 172
C(8)=0c’expq- [ij +[§—2—] +(§—2]

P P2 Ps
S))

where ¢0;, &, and J; are the separation vectors,
p1, P> and p; are the correlation lengths and & is
the variance of the field.

Porosity, active soil depth, amplitude of diur-
nal impact and loss coefficient fields were gen-
erated by using the TBM. This method was
chosen due to its computational efficiency in

generating large fields and its ability to preserve
field statistics such as mean, covariance and

correlation structure. The accuracy of TBM de-
pends on an appropriate choice of model pa-
rameters.

Porosity data of SGP 97 experimental field
were used in this study. Basic data to generate
loss coefficients are calculated by using the
SGP °97 soil moisture data with 0.8 km by 0.8
km resolution. The estimate of loss coefficient is
0.0000125 m/hour with same correlation length
of soil moisture data. The amplitude of diurnal
cycle and active soil depth field were generated
by using TBM method.

4. SOIL MOISTURE FIELD GENERA-
TION AND SAMPLING STUDY

The construction of sufficient two dimen-
sional soil moisture data and precipitation data
under several soil properties, vegetation charac-
teristics, topographic characteristics and climate
conditions is necessary to analyze the field
characteristic in soil moisture sampling. Fig. 3
shows the schematic diagram of simulation
study. The standard procedures are: 1) to gener-
ate the soil properties, elevation, loss coefficient
and diffusion coefficient; 2) to generate rainfall
data with tuned parameter from experimental



Water Engineering Research, Vol. 3, No. 1, 2002

data; 3) to generate soil moisture field; 4) to

analyze the impact of field conditions, sampling '

design, partial coverage by using simulated soil
moisture field.

The dimension of analysis field was 128x128
with 800 m pixel resolution. Soil moisture and
rainfall fields were generated hourly for a year
with an extra 30 days data, which was intro-
duced to remove the effect of initial condition.
The porosity field with 0.8 km x 0.8 km resolu-
tion was estimated using CONUS data whose
resolution is 1 km x 1 km. Simulation field ele-
vation is extracted from DEM data. Table 2
shows the UTM coordinate of porosity and
DEM field. Initial soil moisture is assumed con-
stant value of 0.5 and more generated by using
TBM method with mean of 0.5 and standard
deviation is 0.05. Actual soil depth field was
held at constant a value i.e. 0.5m or 0.05m and
generated by using the TBM method. Loss coef-
ficient and amplitude of the diurnal impact field
was computed by use of the TBM.

The Monsoon ’90 soil moisture data and
simulated soil moisture were compared to verify
the soil moisture model in fig. 4. Values ob-
tained for simulated soil moisture exhibits a
close to the experimental data. In the Mon-
soon ’90 experiment, the rainfall gage and soil
moisture gage were not located in same the spot
so which caused a difference between simulated
soil moisture and field soil moisture during day
10 to day 20. Fig. 5 shows the effect of inter-
mittent visit of the observation satellite under
different climatic condition. Trend of sampling
error is linearly increased with increase of sam-
pling interval and the diurnal variation caused
dramatic increase of sampling error between
sampling interval 12 hour and 24 hour. The
WGR model parameters for those two cases are
shown in Table 2. This figure depicts a similar
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pattern to that of fig. 2. Sampling twice per day
can remove the sampling error caused by the
diurnal cycle.

Different sensing radius, 50km, 70km, and
90km, were used to realize the effect of partial
coverage of remote sensing. Each sensing radius
has an annual mean of coverage portion, equal
to 23%, 50%, 64%, 82% and 95% of the obser-
vation area. Figure 6 shows that partial coverage
can cause an increase in sampling error over that
of the diurnal impact. Decreasing the coverage
portion decreases the impact of diurnal cycle in
sampling error. The sampling error caused by
temporal gap is also decreased by decreasing the
coverage portion. If the annual mean of cover-
age portion is about 90%, the effect of partial
coverage to sampling error can be disregarded.

In attempting to characterize a soil moisture
field, the installation of soil moisture gages,
both number and location are relevant to this
process. Fig. 7 and 8 show the sampling error
introduced by soil moisture gage installation.
Those figures show that block random installa-
tion can provide a more accurate measurement
than from random installation of soil moisture
gages. Those patterns in the figures are very
similar to that of partial coverage. The impact of
diurnal cycle on sampling error is decreased and
can not affect the sampling error if the sampling
gage network is sparse. Fig. 9 indicates that
sampling error decreases with an increase in soil
porosity. Water retention capacity of fields is
very important to sampling error. The smaller
the water retention capacity of the field (e.g.
small soil porosity and small active soil depth)
the greater the sampling error. Fig. 10 shows
sampling error for the field with a large loss
coefficient is greater than that for the field
which has a small loss coefficient. The effect of
heterogeneity of soil properties and rainfall to
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sampling error is smaller than that of intermit-
tent visit. If we choose a small sampling interval
we can dramatically reduce the sampling error
generated by other factors such as heterogeneity
of rainfall, soil properties, topography and cli-

mate conditions.

5. RESULTS AND DISCUSSION

The error of daily sampling has the cyclic
form between 1 % and 4 %. Figure 1 shows the
error of daily sampling (remote sensing from
satellite or airplane) is affected by diurnal cycle.
The daily sampling between 5 am to 8 am shows
the lowest value of 1 % and between 1 p.m. to 3
p.m. the sampling error shows the highest value
of 4%. The impact of the temporal gap to the
soil moisture sampling was also analyzed from
the Walnut Gulch data. The mean and standard
deviation of sampling error linearly increased
with increase of sampling interval. The error of
daily sampling linearly increases with increase
of the amplitude of diurnal cycle.

Soil moisture model, rainfall model and ran-
dom field generation model with model pa-
rameters estimated from experimental data such
as the SGP’97 data were used to generate two
dimensional soil moisture fields. 13 months long
hourly two dimensional soil moisture data and
precipitation data under several soil properties,
topographic conditions, loss fields and climate
conditions were generated to use sampling error
analysis. One hundred months were randomly
selected to analyze sampling error. Each sam-
pling error represents an ensemble mean of 100
months.

Partial coverage or block random installation
is superior to random installation. The water
retention capacity of fields is very important in

the sampling error. The smaller the water reten-
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tion capacities of the field, small soil porosity
and thin active soil depth, the greater sampling
error. These results indicate that the sampling
error is sensitive to water retention capacity.
Ensemble mean and standard deviation of sam-
pling error with change of statistical parameters
of porosity field, active soil depth, loss coeffi-
cient, partial coverage and sensor installation,
must be estimated.
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