• Title/Summary/Keyword: Water resources facilities

Search Result 478, Processing Time 0.033 seconds

A Study on the Water Supplies and Sewage Amount in the Apartment Complexes (아파트단지의 급수량 및 오수발생량에 대한 조사 연구)

  • Yun, Yeo-Jin;Choe, Myeong-Su;Bang, Gi-Ung
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.155-165
    • /
    • 1998
  • As an improvement on qualities of lives and a change in the habitual ways people eat require more water to be used for daily lives, the amount of wastewater generated from our usual lives is also expected to be in higher rate of consumption. The unit loading factor of sewage flow-rate based upon the number of people living in the apartment complexes has to be found for the design of the sewage or wastewater treatment facilities. These data are definitely thought to be useful for the plans to operate the sewage treatment facilities and for those to establish the plans toward a management of water qualities. Thus this study has shown that the data regarding the water supplies and the number of apartment residents within the 123 districts of KNHC(Korea National Housing Corporation) were collected and analyzed. One district in Seoul and the other local district were chosen an the experimental sites for th hourly, daily, weekly and seasonal measurements of the influent sewage flow-rate. The unit loading factor of influent sewage flow-rate were determined through the comparison of total sewage amount in combination with the number of people residing in two apartment complexes with supplying amount of water.

  • PDF

Study on the Improvement of Water Regeneration Center by Using Non-water-soluble Sanitary Products: Focusing on the case of Seoul City (비수용성 위생용품 사용에 따른 물재생센터 개선방안: 서울시를 중심으로)

  • Choong-Gon Kim;Yoon-Hwan Bae;Hyun-Gon Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.39-44
    • /
    • 2023
  • This study was conducted to analyze problems related to non-water-soluble sanitary products during the treatment of water regeneration centers in E.T.F. and S.T.F. at a time when the demand and supply of non-water-soluble sanitary products are increasing. As a result, the improvement plan of the W.R.C. should focus on pretreatment facilities. When replacing facilities in the future, various dust removers suitable for the facility's reality will be installed in the pretreatment of S.T.F., and it is proposed to link a bar-racks screen with a comprehensive treatment device or install a comprehensive treatment device for impurities alone in the pretreatment of E.T.F.. In addition, a microscreen screen must be installed on the front end of the excretory treatment unit. to separate non-water-soluble materials, and it is necessary to secure a maintenance space for the excretory treatment unit.

A comparative study of Water Public-Private partnership characteristics in Guangdong and Shandong provinces in China

  • Jihye Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.182-182
    • /
    • 2023
  • Since China adopted Public Private Partnerships (PPPs) in the 1980s, China has relied on water PPPs to expand appropriate water facilities.. According to the World Bank data from 1994 to 2020, the top five provinces hosted over 40 percent of total PPPs, with four of them located in the Huadong area and one in the Henan area. A vast gap exists between the group attracting the most PPPs and the group hosting the least. This study explores Guangdong and Shandong provinces, which have led most PPPs in China. Coincidently, these areas are also famous for the typical areas to show the Chinese economic policy after the open-door policy. They have achieved economic development and rapid urbanization rates based on the large scale of Foreign Direct Investment inflow and export-oriented manufacturing industry, as well as their active participation in PPPs over the last thirty years. An economic approach can provide valuable insights into the development of water infrastructure. Adequate urban infrastructure has been shown to impact local economic development positively. Water infrastructure also provides a basic and sustainable environment for economic activities by satisfying more water usage, improving the efficiency of the water supply, and reducing water pollution caused by industrial activities. However, it remains only partially understood without inclusive research on the issues related to water resources in each province. For instance, existing studies have been limited to explaining slightly different patterns of water PPPs between Guangdong and Shandong at the beginning of the PPP era. This study aims to elucidate the development pattern of water PPPs in each province from multi-dimensional aspects. Therefore, the study will help understand why China boosted the development of the private water market.

  • PDF

Evaluation of the linked operation of Pyeongrim Dam and Suyangje (dam) during period of drought (가뭄 시 평림댐과 수양제 연계 운영 평가)

  • Park, Jinyong;Lee, Seokjun;Kim, Sungi;Choi, Se Kwang;Chun, Gunil;Kim, Minhwan
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.4
    • /
    • pp.301-310
    • /
    • 2024
  • The spatial and temporal non-uniform distribution of precipitation makes water management difficult. Due to climate change, nonuniform distribution of precipitation is worsening, and droughts and floods are occurring frequently. Additionally, the intensity of droughts and floods is intensifying, making existing water management systems difficult. From June 2022 to June 2023, most of the water storage rates of major dams in the Yeongsan river and Seomjin river basin were below 30%. In the case of Juam dam, which is the most dependent on water use in the basin, the water storage rate fell to 20.3%, the lowest ever. Pyeongnim dam recorded the lowest water storage rate of 27.3% on May 4, 2023. Due to a lack of precipitation starting in the spring of 2022, Pyeongnim dam was placed at a drought concern level on June 19, 2022, and entered the severe drought level on August 21. Pyeongrim dam and Suyangje(dam) have different operating institutions. Nevertheless, the low water level was not reached at Pyeongnim dam through organic linkage operation in a drought situation. Pyeongnim dam was able to stably supply water to 63,000 people in three counties. In order to maximize the use of limited water resources, we must review ways to move water smoothly between basins and water sources, and prepare for water shortages caused by climate change by establishing a consumer-centered water supply system.

Analysis of Infiltration Facilities Effects for the Borimcheon Catchment (도림천 유역을 위한 침투증진시설의 효과분석)

  • Lee Seung Jong;Kim Young-Oh;Lee Sang Ho;Lee Kil Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.100-104
    • /
    • 2005
  • 본 연구에서는 도시의 급격한 발달로 인해 왜곡된 물순환을 나타내고 있는 도림천 유역에 대해서 물순환 회복을 위한 대안 중 침투증진시설의 효과에 대한 모의를 수행하였다. 물순환 모의는 도시유역의 물순환 정량화를 목적으로 개발된 WEP(Water and Energy transfer Processes) 모형을 이용하였으며, 침투증진시설로는 침투트랜치와 투수성 포장재의 설치효과를 분석하였다. 물순환 회복효과는 도시개발 이전의 유출특성과의 비교를 통해 평가하였으며, 이를 위해 1975년의 토지이용도로 도시개발 이전의 물순환 모의를 수행하였다. 모의결과 도시화에 의해 불투수율이 과거보다 $18.7\%$ 증가한 것을 알 수 있었으며, 이로 인해 첨두시간은 감소하고, 첨두 및 총유출량은 증가한 것으로 나타났으며, 침투량과 기저유출량이 감소한 것을 확인할 수 있었다. 침투증진시설의 설치효과는 침투트랜치와 투수성 포장재의 개별적인 설치보다는 두 가지를 함께 적용했을 경우에 도시개발 이전의 유출특성에 근접하는 것을 알 수 있었다.

  • PDF

Application of Rainwater Utilization Facilities for Sound of Water Cycle in Urban Area (도시 물순환 건전화를 위한 우수저류침투시설의 적용)

  • Kim, Young-Min;Kim, Ree-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.375-379
    • /
    • 2006
  • 본 연구에서는 물순환 왜곡이 심화되고 있는 도시 하천유역을 대상으로 택지개발과 같은 도시화로 인한 영향을 검토하고, 개발로 인한 영향을 최소화할 수 있도록 적정 우수저류침투시설을 계획..설계하는 것을 목적으로 하였다. 도시화 전후의 물순환의 변동특성은 WEP(Water and Energy Transfer Processes) 모형을 활용하였으며, 택지 개발 지구내 우수저류침투시설은 독일 베를린공대와 한국건설기술연구원이 공동 개발한 '공동주택 빗물관리 최적화 모형(가제)'을 활용하여 모의하였다. 대상 하천유역은 의왕시 청계동 및 포일동 일원에 도입예정인 의왕청계지구 택지개발지구를 포함한 안양천 상류의 대한교 상류유역이다. 단지 개발 전후 토지이용특성이 대부분 밭에서 중고층 주택지역으로 변경됨에 따라 불투수면적 비율이 10.5%에서 15.7%로 증가하였으며, 이로 인해 침투량, 증발산량, 지하수 유출량의 감소, 지표면 유출 및 하천으로의 유출량이 크게 증가하는 것으로 나타났다. 도시화로 인한 물순환 체계의 건전화를 위해서 우수저류침투시설의 도입이 필요할 것으로 판단된다.

  • PDF

A Study on Examples of Eco-Friendly School Design - Focusing on School Facilities in USA, Japan and Korea - (학교건축의 친환경적 계획수법에 대한 사례연구 - 미국, 일본, 한국의 학교건축을 중심으로 -)

  • Lee, Ji-Young;Lee, Kyung-Sun
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.18 no.2
    • /
    • pp.3-14
    • /
    • 2011
  • This study aims to identify differences and lessons in eco-school planning techniques and sustainable design methods by analyzing comparatively green building certification system and the cases of sustainable schools in US, Korea and Japan. As a result of the comparative analysis, green building certification system for school facilities, both domestic and international, is categorized into external environment, energy, materials and resources, and indoor environment. From the case study, it is common that roof garden and biotopes are installed for external environment, while energy saving, passive energy utilization methods for natural lighting and ventilation such as arrangement planning, courtyard, top-light, shading devices, solar panel and insulation by roof garden are most frequently used. Also, storm water uses, water saving equipment and sustainable materials are often introduced for resource savings. Concerns for indoor environment is frequently addressed by introducing natural light and ventilation in the buildings, which makes ultimately a comfortable space.

  • PDF

Network Modeling of Paddy Irrigation System using ArcHydro GIS - ANGO Agricultural Water District - (ArcHydro를 이용한 GIS기반의 관개시스템 네트워크 모델링 - 안고농촌용수구역을 대상으로 -)

  • Park, Geun-Ae;Park, Min-Ji;Jang, Jung-Seok;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.1
    • /
    • pp.73-83
    • /
    • 2007
  • Network modeling of irrigation system that links irrigation facilities with stream is necessary to establish complicated rural water management system and to manage agricultural water effectively. This study attempted a network modeling for an agricultural water district called "ANGO" located in Anseongcheon watershed by connecting ArcHydro Model developed to control geographical information data in the field of water resources and AWDS(Agricultural Water Demand & Supply Estimation System) developed by KRC (Korea Rural Community & Agriculture Corporation). Network modeling was embodied by build topology between spatial objects of total 70 agricultural irrigation facilities (24 reservoirs, 18 pumping stations, 28 weirs) and stream network using ArcHydro Model. In addition, new menus were added in ArcGIS system for query and visualization of text-based AWDS outputs such as irrigation facilities information, water demand and supply analysis.

  • PDF

Development and Application of the Catchment Hydrologic Cycle Assessment Tool Considering Urbanization (I) - Model Development - (도시화에 따른 물순환 영향 평가 모형의 개발 및 적용(I) - 모형 개발 -)

  • Kim, Hyeon-Jun;Jang, Cheol-Hee;Noh, Seong-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.203-215
    • /
    • 2012
  • The objective of this study is to develop a catchment hydrologic cycle assessment model which can assess the impact of urban development and designing water cycle improvement facilities. Developed model might contribute to minimize the damage caused by urban development and to establish sustainableurban environments. The existing conceptual lumped models have a potential limitation in their capacity to simulate the hydrologic impacts of land use changes and assess diverse urban design. The distributed physics-based models under active study are data demanding; and much time is required to gather and check input data; and the cost of setting up a simulation and computational demand are required. The Catchment Hydrologic Cycle Assessment Tool (hereinafter the CAT) is a water cycle analysis model based on physical parameters and it has a link-node model structure. The CAT model can assess the characteristics of the short/long-term changes in water cycles before and after urbanization in the catchment. It supports the effective design of water cycle improvement facilities by supplementing the strengths and weaknesses of existing conceptual parameter-based lumped hydrologic models and physical parameter-based distributed hydrologic models. the model was applied to Seolma-cheon catchment, also calibrated and validated using 6 years (2002~2007) hourly streamflow data in Jeonjeokbigyo station, and the Nash-Sutcliffe model efficiencies were 0.75 (2002~2004) and 0.89 (2005~2007).

Multi regression analysis of water quality characteristics in lowland paddy fields

  • Kato, Tasuku
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.36-36
    • /
    • 2012
  • Drainage water in lowland paddy fields is quantitatively influenced recycle and/or repeated irrigation by irrigation facilities, i.e. pumps, check gates, small reservoirs and so on. In those drainage channels, nutrients accumulation and increasing organic matters are considered to be occurred, and water quality would be degraded not only environmental aspect but irrigation purpose. In general, Total Nitrogen (T-N) is interested water quality index in irrigation water, because high nitrogen concentration sometimes caused decreasing rice production by excess growth and fallen or degrading quality of taste, then, farmers would like to clear water less than 1mg/L of T-N concentration. In drainage channel, it is known that the nitrogen concentration change is influenced by physical, chemical and biological properties, i.e, stream or river bed condition, water temperature, other water quality index, and plant cover condition. In this study, discharge data (velocity and level) in a drainage channel was monitored by an Acoustic Doppler system and water quality was sampled at same time in 2011. So those data was analyzed by multi regression model to realize hydrological and environmental factors to influence with nitrogen concentration. The results showed the difference tendency between irrigation and non-irrigation period, and those influenced factors would be considered in water quality model developing in future.

  • PDF