• Title/Summary/Keyword: Water resource monitoring

Search Result 118, Processing Time 0.02 seconds

Monitoring and Management of Contaminated Suspended Solid (오염 부유물질의 관측과 관리)

  • Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.932-937
    • /
    • 2011
  • Main objectives of this paper were; firstly, to explain impacts of suspended solid in the water body on the relationship between water quantity and water quality; secondly, study on the inter-relationship between organic materials, nutrients, pathogens, and suspended solids considering eco-friendly water resources. Relationship between water quality and water quantity is not easy to understand as it includes physicochemical-biological reactions and diffuse pollutions. Especially, suspended solid makes water resource management difficult. Eroded soil in the upper land transported to the downstream by water flows carrying biological and physicochemical information and sedimented in the downstream. As sediment scoured under high flow condition and environmental change, suspended solid and sediment should be emphasized for understanding the inter-relationship between water quality and water quantity. Knowledge gaps between known monitored data and management of suspended solid were identified as well for future study.

Design of CIM(Common Information Model) Profile for Smart City Energy Monitoring (스마트시티 에너지 감시를 위한 CIM(Common Information Model) 프로파일 설계)

  • Youngil, Kim;Changhun, Chae;Yeri, Kim;Jihoon, Lee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.127-135
    • /
    • 2022
  • With the advent of high technologies such as the 4th Industrial Revolution and artificial intelligence and big data, efforts are being made to solve urban problems and improve the quality of life by applying new technologies in the smart city field. In addition, as carbon neutrality has emerged as an important issue due to global warming, smart city energy platform technologies such as urban energy management, efficiency improvement, and carbon reduction are in the spotlight. In order to effectively manage urban energy, energy resource information such as electricity, water, gas, hot water, heating, etc. must be collected from the management system of various energy utilities and managed on the central platform. The centrally integrated data is delivered to external city management systems that require city energy information through an energy platform. This study developed a CIM profile for smart city energy monitoring required to provide energy data to external systems. Electric data model were designed using the CIM class of IEC 61970, and water, gas, and heat data model were designed in compliance with the UML-based design ideas of IEC 61970.

Analysis of chromaticity cause in Jeju Eoseungsaeng Lake (제주도 어승생 저수지 색도 원인 분석)

  • Lee, Jeonghoon;Lee, Heenam;Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.381-389
    • /
    • 2016
  • Jeju Eoseungsaeng lake which is a main water resource of Eoseungsaeng water treatment plant($Q=15,000m^3/d$) experienced high chromaticity(40 CU) and pH(9.46) in 2013. This could decline customer's confidence on drinking water quality unless proper identification and removal of chromaticity were implemented. To find cause of chromaticity, water monitoring on various water parameters including TOC, algal cell count, Chl-a, turbidity, SS, conductivity, etc. were implemented. Iron and manganese were excluded from the cause of chromaticity due to its low concentration (i.e., < 0.02 mg/L). Correlation among water parameters showed that relationship between algal cell count and chromaticity was the highest(R=0.43), which suggested that presumably the main reason of chromaticity occurrence in Jeju Eoseungsaeng lake was algae.

Task-Oriented GIS for Water Management at Taipei Water Resource District

  • WU Mu-Lin;TAl Shang-Yao;CHOU Wen-Shang;SONG Der-Ren;LIU Shiu-Feng;YANQ Tsung-Ming
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.668-670
    • /
    • 2004
  • Taipei Water Management Office (TWMO) is one of the eleven district offices in Water Resource Agency. Water management is the top priority to be pursued both on daily management and long-term management at TWMO. There are five departments to perform a wide range of tasks in addition to water management. All management prescriptions are simply to provide sustainable clean water for about four millions population in Taipei. TWMO has gone through 16 years experience of development and implementation of GIS in water management. The objectives of this paper are to provide the major ingredients of successful and operational GIS for water management. The five departments at TWMO have performed tasks such as city planning, construction management, forest management, land use enforcement, soil and water conservation, water quality monitoring and protection, garbage collection, and sewage disposal management. Data base creation was one of the major jobs to be done. Update of data base has to be done on a daily basis. Computers, its peripheral, and software are essential for GIS developed at TWMO. Know-how and technical skill on computers and GIS for every technician are contributing significantly such that GIS can be implemented on most of jobs performed at TWMO. Implementations of GIS have been pursued by application modules on a task-oriented basis. Application modules are simple, easy to use, and menu driven with only Chinese. Web-based and mobile GIS are the new components that make water management at TWMO stay on the right course. To solve problems encountered in water management by GIS at TWMO can be easily and user-friendly may be the most important experience.

  • PDF

Analysis of ecological characteristic variations of small yellow croaker (Larimichthys polyactis) in Korea using long-term time series data (장기간 시계열 자료를 활용한 우리나라 참조기(Larimichthys polyactis) 자원의 생태학적특성 변동 분석)

  • Moo-Jin KIM;Heejoong KANG;Sang Chul YOON
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.3
    • /
    • pp.235-243
    • /
    • 2024
  • Researching and estimating the ecological characteristics of target fish species is crucial for fisheries resource management. The results of these estimates significantly influence stock assessments and management reference points such as size limit and closed seasons. Recently, ecological characteristics have been changing due to overfishing, climate change, and marine pollution, making continuous estimation and monitoring essential. This study analyzed the ecological changes in small yellow croaker (Larimichthys polyactis) resources in Korea over 24 years (2000-2023) using biological data (growth and gonad traits). By estimating the annual length-weight relationship and length at maturity (L50 and L95), we interpreted the numerical trends of early maturation due to resource depletion. The parameter b of the length-weight relationship, indicating the nutritional status of the resources, showed a slight increase over the years, suggesting relatively good nutritional status (b > 3.0) during most periods. Trend analysis between length at maturity and biomass indicated that as biomass decreased, maturity length also decreased.

Evaluation on Maximum Irrigation Amounts of Groundwater Keeping up with a Demand During Short-term Drought (가뭄 수요대응 단기간 허용 가능한 최대 취수량 평가)

  • Lee, Byung Sun;Myoung, Wooho;Lee, Gyusang;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.76-87
    • /
    • 2021
  • Groundwater is considered to be the best water resource to solve water shortage problems during drought periods. Even though excessive pumping (overdraft) during short-period may give an unprofitable effect on groundwater hydrology, it has a primary role to solve a lack of water resources and to maintain incomes of farmers. This study evaluated maximum irrigation amounts of groundwater to each local-government and province during drought periods. Maximum irrigation amounts of groundwater were evaluated using cumulative groundwater usage data of each local-government during normal and drought years. Maximum irrigation amounts of groundwater during drought periods would be roughly identified as approximately 1.3 times more than the exploitable amounts of groundwater resources for each local-government. Drawdown-limitation depth on groundwater levels at each monitoring well was determined by transforming the maximum irrigating amounts into degree of change on levels. Universal limitation depth of drawdown on groundwater levels was evaluated to be approximately three times of annual fluctuating range on groundwater levels for each monitoring well. Systematic response on groundwater demands with abiding by drawdown-limitation depth can attain an optimal irrigation of groundwater resources during short-term drought.

Long-Term Monitoring of Noxious Bacteria for Construction of Assurance Management System of Water Resources in Natural Status of the Republic of Korea

  • Bahk, Young Yil;Kim, Hyun Sook;Rhee, Ok-Jae;You, Kyung-A;Bae, Kyung Seon;Lee, Woojoo;Kim, Tong-Soo;Lee, Sang-Seob
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1516-1524
    • /
    • 2020
  • Climate change is expected to affect not only availability and quality of water, the valuable resource of human life on Earth, but also ultimately public health issue. A six-year monitoring (total 20 times) of Escherichia coli O157, Salmonella enterica, Legionella pneumophila, Shigella sonnei, Campylobacter jejuni, and Vibrio cholerae was conducted at five raw water sampling sites including two lakes, Hyundo region (Geum River) and two locations near Water Intake Plants of Han River (Guui region) and Nakdong River (Moolgeum region). A total 100 samples of 40 L water were tested. Most of the targeted bacteria were found in 77% of the samples and at least one of the target bacteria was detected (65%). Among all the detected bacteria, E. coli O157 were the most prevalent with a detection frequency of 22%, while S. sonnei was the least prevalent with a detection frequency of 2%. Nearly all the bacteria (except for S. sonnei) were present in samples from Lake Soyang, Lake Juam, and the Moolgeum region in Nakdong River, while C. jejuni was detected in those from the Guui region in Han River. During the six-year sampling period, individual targeted noxious bacteria in water samples exhibited seasonal patterns in their occurrence that were different from the indicator bacteria levels in the water samples. The fact that they were detected in the five Korea's representative water environments make it necessary to establish the chemical and biological analysis for noxious bacteria and sophisticated management systems in response to climate change.

Estimating Nakdong Estuary Barrage outflow using upstream hydrograph (상류 수위를 활용한 낙동강 하구둑 유출량 추정)

  • Shim, Kyuhyun;Jung, Hahn Chul;Hwang, Do-hyun;Kim, Daesun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.165-171
    • /
    • 2023
  • The Nakdong Estuary Barrage is a tidal river environment where freshwater and seawater meet. This requires systematic monitoring of both surface water discharged from the estuary barrage and submarine groundwater discharge. In this study, upstream hydrograph and water balance analysis were used to calculate the change in water storage and discharge of the Nakdong Estuary Barrage. Submarine groundwater discharge was also calculated based on remote sensing-based digital elevation model data and hydrological modeling data, and compared with the estimated surface water discharge for analysis. Our proposed method can be efficiently applied to water resource management by utilizing remote sensing-based altimeter data other than field measurement. Because submarine groundwater discharge plays a significant role on the coastal environment as well as surface water discharge from an estuary barrage, studies on groundwatersurface water interactions in a river estuary should be sufficiently considered in monitoring the ecosystem of the Nakdong Estuary Barrage.

Digital Twin based Household Water Consumption Forecasting using Agent Based Modeling

  • Sultan Alamri;Muhammad Saad Qaisar Alvi;Imran Usman;Adnan Idris
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.147-154
    • /
    • 2024
  • The continuous increase in urban population due to migration of mases from rural areas to big cities has set urban water supply under serious stress. Urban water resources face scarcity of available water quantity, which ultimately effects the water supply. It is high time to address this challenging problem by taking appropriate measures for the improvement of water utility services linked with better understanding of demand side management (DSM), which leads to an effective state of water supply governance. We propose a dynamic framework for preventive DSM that results in optimization of water resource management. This paper uses Agent Based Modeling (ABM) with Digital Twin (DT) to model water consumption behavior of a population and consequently forecast water demand. DT creates a digital clone of the system using physical model, sensors, and data analytics to integrate multi-physical quantities. By doing so, the proposed model replicates the physical settings to perform the remote monitoring and controlling jobs on the digital format, whilst offering support in decision making to the relevant authorities.

The development of water circulation model based on quasi-realtime hydrological data for drought monitoring (수문학적 가뭄 모니터링을 위한 실적자료 기반 물순환 모델 개발)

  • Kim, Jin-Young;Kim, Jin-Guk;Kim, Jang-Gyeng;Chun, Gun-il;Kang, Shin-uk;Lee, Jeong-Ju;Nam, Woo-Sung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.569-582
    • /
    • 2020
  • Recently, Korea has faced a change in the pattern of water use due to urbanization, which has caused difficulties in understanding the rainfall-runoff process and optimizing the allocation of available water resources. In this perspective, spatially downscaled analysis of the water balance is required for the efficient operation of water resources in the National Water Management Plan and the River Basin Water Resource Management Plan. However, the existing water balance analysis does not fully consider water circulation and availability in the basin, thus, the obtained results provide limited information in terms of decision making. This study aims at developing a novel water circulation analysis model that is designed to support a quasi-real-time assessment of water availability along the river. The water circulation model proposed in this study improved the problems that appear in the existing water balance analysis. More importantly, the results showed a significant improvement over the existing model, especially in the low flow simulation. The proposed modeling framework is expected to provide primary information for more realistic hydrological drought monitoring and drought countermeasures by providing streamflow information in quasi-real-time through a more accurate natural flow estimation approach with highly complex network.