• Title/Summary/Keyword: Water resistance.

Search Result 3,406, Processing Time 0.033 seconds

Integral Analysis of the Effects of Non-absorbable gases on the Heat Mass Transfer of Laminar Falling Film

  • Kim, Byong-Joo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.56-66
    • /
    • 1998
  • The absorption process of water vapor in a liquid film is an important process in LiBr-Water absorption system. The composition of the gas phase, in which a non-absorbable gas is combined with the absorbate, influences the transport characteristics. In the present work, the absorption processes of water vapor into aqueous solutions of lithium bromide in the presence of non-absorbable gas are investigated. The continuity, momentum, energy and diffusion equations for the solution film and gas are formulated in integral forms and solved numerically. It is found that the mass transfer resistance in gas phase increases with the concentration of non-absorbable gas. However the primary resistance to mass transfer is in the liquid phase. As the concentration of non-absorbable gas in the absorbate increases, the interfacial temperature and concentration of absorbate in solution decrease, which results in the reduction of absorption rate. The reduction of mass transfer rate is found to be significant for the addition of a small amount of non-absorbable gas to the pure vapor, especially at the outlet of tube where the non-absorbable gas accumulates. At higher non-absorbable gas concentration, the decrease of absorption rate seems to be linear to the concentration of non-absorbable gas.

  • PDF

Numerical Simulation of Hydraulic Jump (도수의 수치 모의)

  • Hwang, Seung-Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.749-762
    • /
    • 2023
  • A depth-integrated model with an approximate Riemann solver for flux computation of the shallow water equations was applied to hydraulic jump experiments. Due to the hydraulic jump, different flow regimes occur simultaneously in a single channel. Therefore, the Weisbach resistance coefficient, which reflects flow conditions rather than the Manning roughness coefficient that is independent of depth or flow, has been employed for flow resistance. Simulation results were in good agreement with experimental results, and it was confirmed that Manning coefficients converted from Weisbach coefficients were appropriately set in the supercritical and subcritical flow reaches, respectively. Limitations of the shallow water equations that rely on hydrostatic assumptions have been revealed in comparison with hydraulic jump experiments, highlighting the need for the introduction of a non-hydrostatic shallow-water flow model.

A Study on the Insulation of Thermal Clothing Under Dynamic Air Condition (풍속 존재 시 쾌적보온성 의복의 온열특성에 관한 연구)

  • Song, Min-Kyu;Kwon, Myoung-Sook
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.9
    • /
    • pp.29-37
    • /
    • 2008
  • The purpose of this study was to investigate insulation of thermal clothing under still and dynamic air conditions(with 2.1m/sec air velocity) and decrease of insulation in both conditions, to analyze correlations among them, and to estimate insulation and decrease of insulation using factors, such as fabric insulation, fabric weight, clothing weight, air permeability, and water vapor resistance. A total of 25 kinds of clothing were tested(9 types for suits, 6 types of jacket, 5 types for shirts, and 5 types for trousers). The results of this study were as follows; Thermal resistance of clothing under the dynamic air condition decreased comparing to that of clothing under still air condition in all types of clothing. Decrease in shirts was the biggest(47.5%), followed by suits(39.51%), trousers(37.48%), and jackets(34.49%) in sequence. Thermal resistance of clothing under dynamic air condition showed very high correlation(0.98, p<0.01) with that of clothing under still air condition, followed by thermal resistance of fabric(0.86, p<0.01). Decrease in thermal resistance of clothing showed the highest correlation with air permeability. It didn't show correlation with other factors. Regression analysis showed that fabric thickness would be useful factor for estimating thermal resistance of clothing and air permeability also would be useful factor for estimating decrease in thermal resistance of clothing.

Durability of High Performance Polymer Concrete Composites (Focusing on Chemical Resistance and Hot Water Resistance) (고성능 폴리머 콘크리트 복합재료의 내구성(내약품성 및 내열성을 중심으로))

  • Hwang, Eui-Hwan;Kim, Yong-Yeon;Song, Min-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.360-368
    • /
    • 2017
  • In order to investigate the durability of high performance polymer concrete composites, polymer concrete specimens were prepared using the ortho-type unsaturated polyester resin (UPR) and iso-type UPR as a polymer binder and the calcium carbonate and silica fine powder as a filler. The durability of polymer concrete specimens was measured by hot water resistance, chemical resistance, pore analysis and SEM observation. The compressive strength of the specimen using the iso-type UPR was higher than that of using the ortho-type UPR, and the compressive strength of the specimen using the silica fine powder was higher than that of using the calcium carbonate filler. From hot water resistance results, it was found that the specimen using the iso-type UPR was superior to that of using the ortho-type UPR and the specimen using the calcium carbonate filler was superior to that of using the silica fine powder. The compressive strength reduction rate was measured after the chemical resistance test and the sodium hydroxide solution showed the highest reduction rate, followed by sulfuric acid, hydrochloric acid and calcium chloride solutions. When using the alkaline solution of sodium hydroxide, the weight reduction rate of the specimen using calcium carbonate was lower than that of using silica fine powder, while for the acidic solutions of sulfuric acid and hydrochloric acid, the weight reduction rate of the specimen using the silica fine powder was lower than that of using calcium carbonate.

A Study of Antimicrobial Resistance in Escherichia coli and the Distribution of Indicator Microorganisms in Asan City (아산시 지표미생물의 분포와 Escherichia coli의 항생제 내성에 관한 연구)

  • Lee, Geun-Yeol;Kim, Keun-Ha;Kwon, Mun-Ju;Kwon, Hyuk-Ku;Kim, Yeon-Hee;Lee, Jang-Hoon
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.3
    • /
    • pp.229-235
    • /
    • 2010
  • Efforts to evaluate water pollution using indicator microorganisms have been underway for decades, and driven by research on water purity control applications, water quality criteria are growing more and more strict. Furthermore, recent reports indicate that high concentrations of antibiotics are not absorbed, and are present in excrement from animals and humans dosed with unnecessarily high levels of antibiotics. This has emerged as very important issue from the standpoint of being an ecological and health hazard. In this study, water pollution was analyzed through physicochemical and microbiological means, and antibiotic resistance in indicator microorganisms was assessed. In physicochemical analysis, biochemical oxygen demand (BOD)$_5$ and chemical oxygen demand (COD)$_{Mn}$ evaluation showed that pollution by organisms was highest at the G1 location with a high human population, and the DP location which has many livestock-containing households. The indicator organism levels at the G1 location were: Total Coliforms (1205 colony forming units (CFU)/100 ml), Fecal Coliforms (270 CFU/100 ml), Escherichia coli (253 CFU/100 ml) and Fecal Streptococci (210 CFU/100 ml), while for the DP location levels were: Total Coliforms (1480 CFU/100 ml), Fecal Coliforms (438 CFU/100 ml), E. coli (560 CFU/100 ml), and Fecal Streptococci (348 CFU/100 ml). Levels of fecal indicator microorganisms such as Fecal Coliforms, E. coli and Fecal Streptococci were high at all locations in the fall (the period after the rainy season), and the yearly distribution was similar between these organisms. If the number of livestock-containing households was high, almost all strains of E. coli (as distinct from the other indicator organisms) showed resistance to antibiotics, with the degree of resistance varying between areas. E. coli strains from the OY area in particular, which has a high population density, showed strong resistance to AM10 and Va30. While strong antibiotic resistance was observed overall at the DP and OY locations, no resistance was observed at the EB location.

Effect of the Organic and Nitrogen Removal and Electricity Production on Changing the External Resistor and the Inflow Loading in the Biocathode Microbial Fuel Cell (생물환원전극 미생물연료전지에서 외부저항 및 유입부하에 따른 유기물 및 질소 제거와 전기생산에 미치는 영향)

  • Kim, Jiyeon;Kim, Byunggoon;Kim, Hongsuck;Yun, Zuwhan
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.556-562
    • /
    • 2015
  • In order to remove the organic substances and the nitrate-nitrogen contained in wastewater, some researchers have studied the simultaneous removal of organics and nitrogen by using different biocathode microbial fuel cells (MFCs). The operating conditions for removing the contaminants in the MFCs are the external resistances, HRTs, the concentration of the influent wastewater, and other factors. This study aimed to determine the effect of the external resistors and organic loading rates, from the changing HRT, on the removal of the organics and nitrogen and on the production of electric power using the Denitrification Biocathode - Microbial Fuel Cell (DNB-MFC). As regards the results of the study, the removal efficiencies of $SCOD_{Cr}$ did not show any difference, but the nitrate-nitrogen removal efficiencies were increased by decreasing the external resistance. The maximum denitrification rate achieved was $129.2{\pm}13.54g\;NO_3{^-}-N/m^3/d$ in the external resistance $1{\Omega}$, and the maximum power density was $3,279mW/m^3$ in $10{\Omega}$. When the DNB-MFC was operated with increasing influent organic and nitrate loading by reducing the HRTs, the $NO_3{^-}-N$ removal efficiencies were increased linearly, and the maximum nitrate removal rate was $1,586g\;NO^3{^-}-N/m^3/d$ at HRT 0.6 h.

Soil Resistant and Blood Repellent Finishes of Nonwoven Fabrics Using Foam (거품을 이용한 부직포의 방오방혈가공)

  • 이정민;배기서;노덕길;전병열
    • Textile Coloration and Finishing
    • /
    • v.4 no.3
    • /
    • pp.74-81
    • /
    • 1992
  • Chemical bonded nonwoven fabric for apparel use and spunlaced nonwoven fabric for medical use were finished for soil resistance and blood replellency with fluorochemicals utilizing foam finishing technology (FFT) and conventional padding application techniques. The FFT process improved soil and abrasion resistance properties of nonwoven fabrics compared with the conventional padding process. Excellent water-oil-saline-alcohol repellency values and water impact penetration values were obtained in the spunlaced nonwoven fabrics with both techniques.

  • PDF

Experimental Study on the Power Generation of a Thermoelectric Module with Temperature Difference and Load Resistance (온도차 및 부하 저항에 따른 열전모듈의 발전 특성 분석)

  • Lee, Kong-Hoon;Kim, Ook-Joong;Koh, Deuk-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1942-1947
    • /
    • 2007
  • A thermoelectric module can be used for cooling or power generation. The basic requirements to achieve a significant thermoelectric performance are the same for both generators and coolers. Thermoelectric modules with $Bi_2Te_3$ materials are usually employed in the cooling applications below room temperature but it can also be used for the power generation in the similar temperature range. In the present study, the power generation with a $Bi_2Te_3$ thermoelectric module has been investigated. The temperature difference between the hot and cold sides of the module is maintained with electric heater and cold water from the circulating water bath. The result shows that the electric current generated increases with temperature difference and decreases with the load resistance. However, the voltage increases with both the temperature difference and load resistance. The electric power increases with temperature difference and it has the maximum value when the load resistance is about 4 ${\Omega}$ for a given device.

  • PDF

The Development of the Hydrophobic - Low Viscosity Filling Material for the Surface Treatment for Pavement Preventive Maintenance (예방적 유지보수를 위한 소수성 저점도 AP 표면처리재 개발)

  • Choi, Jun Seong;Kim, Jo Sun
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.35-41
    • /
    • 2014
  • PURPOSES : Surface treatment is a favorable method in the pavement preventive maintenance. This study (Part I) aimed to develop the low viscosity filling material for waterproof characteristics and high penetrable and weather resistance, and a series of companion study (Part II) presents the coating characteristics and performance analysis using field and lab tests. METHODS : Hydrophobic characteristics of the advanced surface treatment material are observed and measured the filling depth and the permeability for sand and asphalt pavement specimen using the water absorption test and permeability test, X-RAY CT test. Color difference for the weather resistance using ultraviolet ray accelerated weathering test is compared with asphalt pavement specimens. RESULTS : The developed material shows the decreased water absorption and increased impermeable effect because of the hydrophobic characteristics. It is found that the filling depth is about 6mm and weather resistance is better than asphalt pavement specimen. CONCLUSIONS : The advanced hydrophobic - low viscosity filling treatment material is developed in this study (Part I) to improve the waterproof characteristics and high filling capacity and weather resistance for the pavement preventive maintenance.