• Title/Summary/Keyword: Water reducing agent

Search Result 267, Processing Time 0.032 seconds

Effects of Poly(Styrene-Co-Maleic acid) as Adhesion Promoter on Rheology of Aqueous Cu Nanoparticle Ink and Adhesion of Printed Cu Pattern on Polyimid Film (수계 Cu 나노입자 잉크에서 Poly(styrene-co-maleic acid) 접착 증진제가 잉크 레올로지와 인쇄패턴의 접착력에 미치는 영향)

  • Jo, Yejin;Seo, Yeong-Hui;Jeong, Sunho;Choi, Youngmin;Kim, Eui Duk;Oh, Seok Heon;Ryu, Beyong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.719-726
    • /
    • 2015
  • For a decade, solution-processed functional materials and various printing technologies have attracted increasingly the significant interest in realizing low-cost flexible electronics. In this study, Cu nanoparticles are synthesized via the chemical reduction of Cu ions under inert atmosphere. To prevent interparticle agglomeration and surface oxidation, oleic acid is incorporated as a surface capping molecule and hydrazine is used as a reducing agent. To endow water-compatibility, the surface of synthesized Cu nanoparticles is modified by a mixture of carboxyl-terminated anionic polyelectrolyte and polyoxylethylene oleylamine ether. For reducing the surface tension and the evaporation rate of aqueous Cu nanoparticle inks, the solvent composition of Cu nanoparticle ink is designed as DI water:2-methoxy ethanol:glycerol:ethylene glycol = 50:20:5:25 wt%. The effects of poly(styrene-co-maleic acid) as an adhesion promoter(AP) on rheology of aqueous Cu nanoparticle inks and adhesion of Cu pattern printed on polyimid films are investigated. The 40 wt% aqueous Cu nanoparticle inks with 0.5 wt% of Poly(styrene-co-maleic acid) show the "Newtonian flow" and has a low viscosity under $10mPa{\cdots}S$, which is applicable to inkjet printing. The Cu patterns with a linewidth of $50{\sim}60{\mu}m$ are successfully fabricated. With the addition of Poly(styrene-co-maleic acid), the adhesion of printed Cu patterns on polyimid films is superior to those of patterns prepared from Poly(styrene-co-maleic acid)-free inks. The resistivities of Cu films are measured to be $10{\sim}15{\mu}{\Omega}{\cdot}cm$ at annealing temperature of $300^{\circ}C$.

Improvement of DeNOx efficiency of SNCR Process with Chemical Additives in Urea Soution (환원제로 우레아를 사용하는 SNCR 공정에서 첨가제 적용에 따른 탈질효율 향상 연구)

  • Yoo, Kyung Seun;Park, Sung Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.663-668
    • /
    • 2017
  • Dye waste water generated in the dye industry is categorized as hazardous waste water that requires appropriate treatment. The pilot scale experimental trials were carried out using dye waste water as an effective additive for the selective non-catalytic reduction (SNCR) of NOx in combustion flue gases. The additives were waste liquor obtained from the dye industry and several purification steps were taken to make a standardized reagents. The dye waste water was shown to possess valuable SNCR qualities (at least 87% NOx reduction efficiency) considering its availability as a waste product, which has to be strictly treated, and have little effects on CO removal. The results indicated that the NO removal efficiency increased first and then decreased with increasing temperature within $750-1150^{\circ}C$. The maximum NO reduction efficiency was approximately 87% at the optimal reaction temperature. A more than 10% increase in NO reduction was achieved in the presence of 1000 ppm Na-additives (dye waste water) compared to that without additives. The Na-based additives have also a significant promoting effect on $N_2O$ reduction and within the SNCR temperature window.

Radiation Shielding to Minimize Image Information Loss (영상 정보 손실을 최소화하는 방사선 차폐체 연구)

  • Su-han Jang;Sang-Hyeun Park;Myeong-Sik Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.449-457
    • /
    • 2023
  • Shielding for reducing exposure dose can make the diagnosis limited. The purpose of this study is to increase the efficiency of radiation protection and minimize the loss of image information by producing the shielding made of the water and the contrast medium which has different proportion and finding out the ideal proportion of them. Each shielding materials were made of water and water-soluble iodine contrast medium with the different proportion. The attenuation rate of absorbed dose was evaluated by the shielding materials in the plastic contents for measuring the efficiency of the radiation protection. As a result, the higher ratio of the contrast medium, the more efficient it is for radiation attenuation. The anatomical structure was observed most properly in case of the solution with 20 ml of the contrast medium and most difficultly in case of more than 60 ml of the contrast medium. In case of the signal intensity between skeleton and gas, the difference of average value had a significant as p < 0.001. Shielding with contrast medium attenuates less than the conventional shielding but in the examination for the sensitive part to radiation, it can be used to minimize the loss of the image information and reduce the exposure dose.

Immunomodulatory Effects of Hexane Insoluble Fraction of Ficus septica Burm. F. in Doxorubicin-treated Rats

  • Nugroho, Agung Endro;Hermawan, Adam;Nastiti, Kunti;Suven, Suven;Elisa, Pritha;Hadibarata, Tony;Meiyanto, Edy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5785-5790
    • /
    • 2012
  • The use of chemotherapeutics induces cardiotoxicity and affects immune functions, therefore development of combinatorial agents against cardiotoxicity and immunosuppression needs to be explored. Previous studies of the hexane insoluble fraction (HIF) of an ethanolic extract of Ficus septica leaves showed anticancer effects singly and in combination with doxorubicin on T47D breast cancer cells. In this present study, it was evaluated for its immunomodulatory activities in doxorubicin-treated rats. Thirty male Sprague Dawley rats were divided into five groups consisting of six rats each as follows: Group 1, receiving oral saline 10 ml/kg BW (control group); Group 2, receiving HIF dose 750 mg/kg BW orally, once daily; Group 3, receiving HIF dose 1.500 mg/kg BW orally, once daily; Group 4, given oral saline 10 ml/kg BW (normal group); Group 5, receiving HIF dose 1.500 mg/kg BW orally, once daily. The rats of group 1-3 were intramuscularly administered with doxorubicin at a dose of 4.67 mg/kg BW at the days 1 and 4 to suppress immune functions. Concomitantly, the rats were treated with saline or HIF for seven consecutive days (1 to 7). Treatment of HIF succeeded in reducing side effects of doxorubicin based on increasing lymphocyte density and phagocytosis activity and capacity of macrophages, as well as increasing the CD8+ blood level and decreasing spleen IL-10 expression. Hexane insoluble fraction of of ethanolic extract of Ficus septica leaves has potential as a protective agent combined with doxorubicin.

Foamed Concrete with a New Mixture Proportioning Method Comparable to the Quality of Conventional ALC Block (ALC 블록성능의 기포콘크리트 배합설계 연구)

  • Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The objective of this study is to develop a high-performance foamed concrete made with a new mixture proportioning as an alternative of autoclaved lightweight concrete (ALC) block. For the early-strength gain of the foamed concrete under an atmospheric curing condition, the binders and chemical agents were specially contrived as follows: 3% anhydrous gypsum was added to ordinary portland cement (OPC) in which $3CaO{\cdot}SiO_2$ content was controlled to be above 60%; and the content of polyethylene glycol alkylether in a polycarboxylate-based water-reducing agent was modified to be 28%. Using these binders and chemical agents, 11 mixes were prepared with the parameters of W/B ratio (30% to 20% in a interval of 2.5%) and unit binder content ($400kg/m^3$ to $650kg/m^3$ in a interval of $50kg/m^3$). The quality and availability of the mixed foamed concrete were examined according to the minimum requirements specified in the KS for ALC block and existed conventional foamed concrete. The measured properties satisfied the minimum requirement of KS for ALC block and proved that the developed high-performance foamed concrete had considerable potential for practical application.

Effects of Cysteine on the Texture and Color of Wheat Flour Noodle (밀국수의 물성과 색에 미치는 cysteine의 영향)

  • 고봉경
    • Korean journal of food and cookery science
    • /
    • v.16 no.2
    • /
    • pp.128-134
    • /
    • 2000
  • Cysteine, a thiol group-containing reducing agent which is known to relax the strain and increase the viscosity of dough, was added to Korean and imported wheat flour noodles to investigate the effect on the properties of raw, dried, and cooked noodles and to determine the optimum cooking time and amount to improve the color of noodles. Addition of cysteine up to 1% of flour (8.25 mmole/100 g flour) was not effective in increasing the brightness of raw and dried noodles and in changing the water activity of dried noodle. However, cysteine improved the brightness of cooked noodle made of both Korean and imported wheat flours. Also, there were notable differences in cooking and sensory properties of cysteine-added cooked noodles such as less firm and stickier texture due to the extraction of organic compounds into broth. When the noodles were cooked for their optimum cooking time, no difference was noticed in the texture and overall preference regardless of the addition of cysteine. Overall, the addition of 1 % cysteine increased the brightness of cooked noodles and reduced the cooking time.

  • PDF

Increase of strength and freezing-thawing resistance of porous concrete by Silica-fume (실리카흄을 사용(使用)한 투수(透水)콘크리트의 강도(强度) 및 동결융해저항성(凍結融解抵抗性))

  • Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.35-40
    • /
    • 2010
  • Existing porous concrete has problems with reduction of strength due to freezing and thawing and exfoliation of aggregate at joints. In this study, a method for increasing strength and durability of porous concrete by using fine aggregate, silica-fume and high-range water-reducing agent was proposed by laboratory tests. Mixing ratio between silica-fume (10%) and fine aggregate (0%, 7%, 15%) was selected as a major test factor, and laboratory tests for compressive strength, flexural strength, permeability coefficient, porosity, freezing and thawing were conducted. Compressive strength and flexural strength were increased as the mixing ratio of fine aggregate was increased. However, permeability and freezing-thawing resistance were decreased due to reduction of porosity. Therefore, the ratio of fine aggregate should be limited to increase strength and durability of the porous concrete, while the mixing ratio of silica-fume should be over 10%.

Compatibility of the Recycled Linerboard Made in Acid Sizing System under Neutral or Alkaline Papermaking Conditions (산성 사이징된 재활용 섬유와 중성 사이징의 상용성)

  • Seo, Man Seok;Lee, Kyong Ho;Lee, Hak Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.56-60
    • /
    • 2016
  • Neutral or alkaline papermaking provides many advantages in paper strength and processing conditions. It also provides the opportunity of using calcium carbonate fillers in papermaking. These diverse advantages have made almost all paper machines of printing and writing papers run under neutral and alkaline conditions. On the other hand, linerboard machines, which use recycled papers as a raw material, are running under acid conditions using a rosin sizing system. Because the recycled raw materials used by the linerboard industry contain significant amounts of alkaline papers, the linerboard industry has an interest in the possibility of using the neutral or alkaline papermaking opportunity. In this study, the compatibility of the recycled linerboards under neutral or alkaline papermaking conditions was examined by recycling them under various pH conditions. The sizing degree of the papers recycled under neutral or alkaline was significantly lower than that of acid formed papers indicating that during the neutral or alkaline recycling process the rosin sized papers lost their sizing efficiency. Recycling of acid formed linerboards under neutral or alkaline conditions increased the amount of foam, and the foam contained substantial amount of solid materials derived from the acid sizing systems. Use of cationic polyelectrolytes including PEI and poly-DADMAC improved the sizing degree of the recycled papers under neutral and alkaline conditions. PEI decreased the foam generation as well while poly-DADMAC did not show any reducing effect of the foam. These results suggest that PEI forms coordinate bonds with rosin acid and precipitate them onto the surface of recycled fibers, while the reaction products between poly-DADMAC and rosin acid ions still remain water soluble under neutral or alkaline conditions.

Numerical Investigation of the Urea Melting and Heat Transfer Characteristics with Three Different Types of Coolant Heaters (냉각수 순환 방식 가열원 형상에 따른 요소수 해동 특성에 관한 수치적 연구)

  • Lee, Seung-Yeop;Kim, Man-Young;Lee, Chun-Hwan;Park, Yun-Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.125-132
    • /
    • 2012
  • Urea-SCR system, which converts nitrogen oxides to nitrogen and water in the presence of a reducing agent, usually AdBlue urea solution, is known as one of the powerful NOx reduction systems for mobile as well as stationary applications. For its consistent and reliable operation in mobile applications, such various problems as transient injection, ammonia slip, and freezing in cold weather have to be resolved. In this work, therefore, numerical study on three-dimensional unsteady heating problems were analyzed to understand the melting and heat transfer characteristics such as urea liquid volume fraction, temperature profiles and generated natural convection behavior in urea solution by using the commercial software Fluent 6.3. After validating by comparing numerical and experimental data with pure gallium melting phenomena, numerical experiment for urea melting is conducted with three different coolant heating models named CH1, 2, and 3, respectively. Finally, it can be found that the CH3 model, in which more coolant is concentrated on the lower part of the urea tank, has relatively better melting capability than others in terms of urea quantity of $1{\ell}$ for start-up schedule.

Investigation of Acids on the Germanium Analysis by HG-ICP-AES (HG-ICP-AES를 이용한 Germanium 분석에 있어서 보조산에 대한 연구)

  • Lim, Hyuneui;Lee, Yeunhee;Kim, Sun-Tae;Kim, Young-Sang;Kim, Kang-Jin
    • Analytical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.34-43
    • /
    • 2001
  • The present work is aimed to evaluate the conditions of the hydride generation (HG) for germanium analysis by inductively coupled plasma (ICP)-atomic emission spectrometry (AES). Twelve different kinds of acids were used such as phosphoric, hydrochloric, nitric, sulfuric, perchloric, boric, tartaric, malic, oxalic, tannic, citric, and acetic acid. It was found that phosphoric acid yielded the maximum efficiency of hydride generation. Also, efficient hydride generation was obtined with the buffer solutions containing phosphate ions over a wide range of pH. In addition, in the presence of phosphoric acid the interference caused by metals was suppressed in the hydride generation of germanium. As the concentrations of a reducing agent and a stabilizing increased the hydride generation efficiency and the acid concentration proviaing the maximum intensity were increased. By using an analytical method developed in this study, the contents of germanium in water and rock samples were determined. The detection limit of germanium in the presence of phosphoric acid was $0.03{\mu}g/L$.

  • PDF