• Title/Summary/Keyword: Water quality problems

Search Result 665, Processing Time 0.025 seconds

Velocity-based decision of water quality measurement locations for the identification of water quality problems in water supply systems (상수도시스템 수질사고 인지를 위한 유속기반 수질계측기 위치 결정)

  • Hong, Sungjin;Lee, Chanwook;Park, Jiseung;Yoo, Do Guen
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.1015-1024
    • /
    • 2020
  • Recently, water pollution accidents have continued to occur in pipelines such as red water Incheon and Seoul. In order to recognize this water quality problem, it is necessary to install a water quality sensor in an appropriate location and measure it in advance to detect or block the water supply to the water faucet of the shelter. However, there are limitations, such as maintenance costs, to installing multiple water meters in all pipelines. Therefore, this study proposed a methodology for determining and prioritizing the installation location of flow-based water quality sensor for the recognition of water quality problems in pipelines. We applied the proposed procedure to the pipe break scenario. The results of the determination of the location of the water quality sensor were presented by applying it to the pipe network that actually operates the emergency pipe in Korea. The result of the decision showed that in the event of abnormal situation caused by the destruction of individual pipes, the flow rate of the pipes around the aqueduct and the tank may change rapidly, resulting in water quality accidents caused by turbidity. In the future, it is expected that the water quality monitoring point selection method, such as establishing an external pipe operation plan for pipe cleaning, will utilize the procedure for determining the location of the water quality sensor according to the velocity.

Design of a Water Quality Monitoring Network in the Nakdong River using the Genetic Algorithm (유전자 알고리즘을 이용한 낙동강 유역의 수질 측정망 설계에 관한 연구)

  • Park, Su-Young;Wang, Sookyun;Choi, Jung Hyun;Park, Seok Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.697-704
    • /
    • 2007
  • This study proposes an integrated technique of Genetic Algorishim (GA) and Geographic Information System (GIS) for designing the water quality monitoring networks. To develop solution scheme of the integrated system, fitness functions are defined by the linear combination of five criteria which stand for the operation objectives of water quality monitoring stations. The criteria include representativeness of a river system, compliance with water quality standards, supervision of water use, surveillance of pollution sources and examination of water quality changes. The fitness level is obtained through calculations of the fitness functions and input data from GIS. To find the most appropriate parameters for the problems, the sensitivity analysis is performed for four parameters such as number of generations, population sizes, probability of crossover, and probability of mutation. Using the parameters resulted from the sensitivity analysis, the developed system proposed 110 water quality monitoring stations in the Nakdong River. This study demonstrates that the integrated technique of GA and GIS can be utilized as a decision supporting tool in optimized design for a water quality monitoring network.

The Effect and Application of Flow Induction Machine in Artificial Canal Way and Lake through Water Quality Model Test (수질모형실험을 통한 인공수로와 호수에서 흐름유발시설 효과검증 및 적용방법에 관한 연구)

  • Choi, Gye-Woon;Kim, Dong-Eon;Yoon, Geun-Ho;Han, Man-Shin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.477-486
    • /
    • 2011
  • The objective of this study is to investigate the water pollution problems brought about by the construction of eco-friendly waterfront space through the physical model experiment including water quality consideration. Due to the lack of water supply into the artificial ponds and canals, the water quality problems such as eutrophication, odor and so on can be occurred. There have been many numerical models on such phenomena but limited studies using physical test due to the difficulty in the verification of physical interpretation of the study area. In this study, a prototype model that is not affected by the dimensionless parameters was carried out, where unpolluted water is mixed into the contaminated water to reduce the concentration of nutrients. In addition, this study also attempt to find the optimal configuration of the flow induction machines using the scale model which will evaluate and verify the effectiveness of the enforcement methods to maintain the water quality objectives.

Water Quality Monitoring for Corrosion Control in Waterworks System (상수도관망 시스템의 부식제어를 위한 수질모니터링)

  • Lee, Hyun-Dong;Kwak, Phill-Jae;Lee, Ji-Eun;Kim, Yeong-Kwan;Han, Myung-Ho;Park, Young-Suk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.77-87
    • /
    • 2009
  • In existing systems, the best method inhibiting corrosion control in water distribution systems is to reduce water corrosiveness. Water corrosion can be decreased by controlling water quality through simple water treatment in treatment plants. On this research, we study the characteristics of tab water qualities in domestic areas, assessment of corrosive water quality and the method of water quality monitoring. This review presents the method of water quality monitoring which is the most applicable. Monitoring for corrosion control in waterworks system is the most proper method; It can prevent serious accidents economically and reduce civil appeals. Surely we should assess corrosive water quality in tab water, and introduce water treatment methods to control corrosive water quality before monitoring for corrosion. According to a lot of researches, it has been proved that simple water treatments can reduce the pipe corrosion. In this review we should indicate that we do not control of the corrosive water quality due to domestic conditions, we should monitor the water quality basically. Therefore, we recognize how the existing water quality can cause problems on pipeline corrosion, how to deal with it. Then it will be possible to apply water quality monitoring for corrosion control in water distribution system. Monitoring for corrosion control can be expressed by LI index, it is already known in literatures. This review presents more simple method than existing methods than existing ones we expect to apply these methods to SCADA in the future.

Development of a new system for measurement of total effluent load of water quality

  • Keiji, Takase;Akira, Ogura
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.221-221
    • /
    • 2015
  • Sustainable use of water resource and conservation of water quality are essential problems in the world. Especially, problems of water quality are serious one for human health as well as ecological system of all creatures on the earth. Recently, the importance of total effluent load as well as the concentrations of pollutant materials has been recognized not only for the conservation of water quality but also for sustainable water use in watersheds. However, the measurement or estimation of total effluent load from non-point source area such as farm lands or forests may be more difficult because both of concentration and discharge of the water are greatly changed depending on various factors especially metrological conditions such as rainfall, while the measurement from a point source area may be easy because the concentration of pollutant materials and amount of discharge water are relatively steady. Therefore, the total effluent load from a non-point source is often estimated by statistical relationships between concentration and discharge, which is called as L-Q equation. However, a lot of work and time are required to collect and analyze water samples and to get the accurate relationship or regressive equation. So, we proposed a new system for direct measurement of total effluent load of water quality from non-point source areas to solve the problem. In this system, the overflow depth at a hydraulic weir is measured with a pressure gage every hourly interval to calculate the amount of hourly discharge at first. Then, the operating time of a small electric pump to collect an amount of water which is proportional to the discharge is calculated to intake the water into a storage tank. The stored water is taken out a few days later in a case of storm event or several weeks later in a case of non-rainfall event and the concentrations of water quality such as total nitrogen and phosphorous are analyzed in a laboratory. Finally, total load of the water quality can be calculated by multiplying the concentration by the total volume of discharge. The system was installed in a small experimental forestry watershed to check the performance and know the total load of water quality from the forest. It was found that the system to collect a proportional amount of water to actual discharge operated perfectly and a total load of water quality was analyzed accurately. As the result, it was expected that the system will be very available to know the total load from a non-point source area.

  • PDF

Current status of Jeju special self-governing province's water infrastructure and direction for improvement (제주특별자치도 물인프라 현황 및 개선방향)

  • Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.497-505
    • /
    • 2021
  • This paper investigates the current status of Jeju special self-governing province (JSSGP)'s water infrastructure and recommends directions for improvement. JSSGP relies on groundwater for most of its water resources. Recently, water usage has been steadily increasing due to the increase of residents and tourists while the quality of groundwater has been steadily worsening. Deterioration in water quality of groundwater can be seen through the increase in concentration of nitrate nitrogen and microorganisms. To overcome such problems, water consumption must be reduced by water demand management in all fields including residential and agricultural water use. The quality of water resources should be preserved through the management of pollutants. For efficient management of water resources, great efforts should be made to reduce the leakage rates in household and agricultural water, which is currently at the highest level in the country. Furthermore, diversification of water intake sources other than groundwater is needed, especially for agricultural water supply. For water and sewerage facilities, compliance with drinking water quality standards and discharge water quality standards must be achieved through the optimization of operation management. This process requires recruiting professionals, improving existing workers' expertise, and improving facilities.

Big Data-based Monitoring System Design for Water Quality Analysis that Affects Human Life Quality (인간의 삶의 질에 영향을 끼치는 수질(물) 분석을 위한 빅데이터 기반 모니터링 시스템 설계)

  • Park, Sung-Hoon;Seo, Yong-Cheol;Kim, Yong-Hwan;Pang, Seung-Peom
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.3
    • /
    • pp.289-295
    • /
    • 2021
  • Today, the most important factor affecting the quality of human life is thought to be due to the environment. The importance of environmental monitoring systems to improve human life and improve welfare as the magnitude of the damage increases year by year due to the rapid increase in the frequency of hail, typhoons, collapse of incisions, landslides, etc. Is increasing day by day. Among environmental problems, problems caused by water quality have a very high proportion, and as there is a growing concern that the scale of damage will increase when water pollution accidents occur due to urbanization and industrialization, the demand for social water safety nets is increasing. have. In the last 5 years, 259 cases of water pollution (Han River 99, Nakdong River 31, Geum River 25, Seomjin River and Yeongsan River 19, and 85 others) have occurred in the four major river basins. Caused damage. Therefore, it is required to establish a water quality environment management strategy system based on big data that can minimize the uncertainty of the water quality environment by expanding the target of water quality management from the current water quality management system centered on the four major rivers to small and medium-sized rivers, tributaries/branches, and reservoirs. In this paper, we intend to construct and analyze a water quality monitoring system based on big data that can present useful water quality environment information by analyzing the water quality information accumulated for a long time.

Quality of Leachate from Manure Compsost (축분퇴비의 침출수 수질 특성(지역환경 \circled2))

  • 홍성구;김진태
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.584-589
    • /
    • 2000
  • Water pollution induced by animal waste is one of the major problems in managing stream water quality. In this presentation, water quality of leachate from manure compost was analyzed by pot experiments, using a rainfall simulator. Based on the limited experiment conditions, the average concentrations of COD, SS, TKN, TP were up to 2000mg/L, 24g/L, 107mg/L, 50mg/L, respectively. The higher concentrations were generally observed when the amount of manure compost was greater and rainfall intensity was lower.

  • PDF

Water Quality Conservation in Rural Areas of Japan - Case Study of Rural Sewerage Project -

  • Taniyama, Shigetaka;Sugita, Hideo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.50-60
    • /
    • 2000
  • In this presentation I would like to introduce the Rural Sewerage Project, subsidized by the Ministry of Agriculture, Forestry and Fisheries (MAFF), for the purpose of water quality conservation and improvement of life in rural areas of Japan. Specifically, it will cover background information on the inauguration of the Project, its strong points, wastewater technology and some of its problems, system of the Project, etc.

  • PDF

Analysis on Occurrence of the Scum in Water Treatment Plants and Its Removal by Water Spray Method (정수장(淨水場) Scum의 발생(發生) 원인분석(原因分析)과 살수에 의한 물리적(物理的) 제거효과(除去效果))

  • Yoon, Jae Heung;Choi, Gye Woon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.3
    • /
    • pp.26-33
    • /
    • 1994
  • To slove the problems by the scum, which causes operational and water quality problems in water treatment plants, several researches were conducted based on the site investigations on twelve large water treatment plants, biological and chemical analysis of scum, analyzing raw water quality data. Two types of scum, which are from scum and floe scum, can be classified based on the analysis and site investigations. The major parameter generating floe scum was indicated as fine bubbles dissolved in the water. The fine bubbles dissolved in the water can be generated by over-saturated air in the water, adding aluminum surface as the coagulant, conducting the break point pre-chlorination and so on. The water spray method, which is one of the physical treatment methods for removing scum, was selected for conducting experiments on the removal efficiency in the flocculation basin of the real water treatment plant. The water spray method was successfully applied for removing scum with the advantages of using spiral nozzles in case of using the raw water rather than the cleaned water.

  • PDF