• Title/Summary/Keyword: Water quality characteristics

Search Result 3,549, Processing Time 0.031 seconds

삽교호유역의 수질자료를 이용한 군집분석 및 요인분석 (Cluster and Factor Analyses Using Water Quality Data in the Sapkyo Reservoir Watershed)

  • 임창수;신재기
    • 한국수자원학회논문집
    • /
    • 제35권2호
    • /
    • pp.149-159
    • /
    • 2002
  • 삽교호유역에 위치한 19개 수질관측지점에서 측정된 월별수질자료를 이용하여 수질관측지점을 2개에서 7개의 수질특성으로 분류하였으며, 그에 따른 수질요인분석을 실시하였다. 군집분석결과 삽교호유역의 각 하천은 개개의 수질특성을 보이고 있으며, 삽교호, 삽효천, 무한천 및 곡교천의 4개 그룹으로 나눌 수가 있었다. 수질분석결과에 의하면 삽교호에서는 부유물질의 농도가 다른 하천보다 높았는데 이는 하천으로부터 유입되는 풍부한 영양염에 의한 식물플랑크톤의 생물량 증가에 따른 것으로 사료된다. 또한 곡교천의 수질은 다른 하천에 비해 생화학적산소요구량은 3.5∼4.8배, 화학적산소요구량은 1.7∼2.5배 높았으며, 전반적으로 삽교호 유역의 수질은 부영양상태를 훨씬 초과하였다. 요인분석결과 삽교천과 무한천은 농경지와 주거지에 의한 수질요인이 지배적이었고, 곡교천은 천안도시지역으로부터 유입되는 과다한 유기물유입과 상류에 위치한 하수처리장의 영향을 복합적으로 받고 있는 것으로 사료된다. 삽교호의 수질은 삽교천과 무한천및 곡교천에서 높은 부하를 보인 인자가 주된 오염요인으로 나타났다.

수자원 보전을 위한 유역통합관리 방안에 관한 연구(II) - 오십천 수계의 수질모델링 및 수질 예측 - (Study in the integrated watershade management for conservation of water resources (II) - Water quality modeling and simulation of Oship stream -)

  • 허인량;정의호;권재혁
    • 한국환경보건학회지
    • /
    • 제28권2호
    • /
    • pp.61-69
    • /
    • 2002
  • Oship stream is located nearby south eastern coasts. This study was performed to find out waters quality modeling and then to predict water quality of Oship stream. Based on survey data, BOD, T-N, T-P calibration and verification result were in good agreement with measured value within mean coefficient variance(MSE) value, which were 13.9%, 9.0%, 26.5% and 19.5%, 12.0%, 16.5%, respectively. Sectional water quality predictions of the main stream of Oship stream are executed on the basis of the following cases 1) with sewage treatment of Dogye-eup 2) reduction of mine wastewater treatment of 80% in th basin. As a result, BOD, T-P improvement rates at down stream of Oship stream, case 1) were appeared 12.2%, 22.2%, case 2) maximum sulfate ion and conductivity reduction removal rate of Oship stream were 58%, 68%. The main pollution sources of Oship-stream were almost domestic wastewater and mine wastewater discharged from Dogye-eup which located in uppers stream. The large effects will appear after the construction of Dogye sewage water treatment plant which remove the organic matter and nutrients in these sewage water. The waste water from mine can not easily to treat for characteristics of effluence and economic problems. However, to achieve the goal of water quality in Oship-stream water system, treatments of those are necessary.

홍삼분말 첨가량에 따른 국수의 품질특성 (Quality Characteristics of Noodles with Red Ginseng Powder Added)

  • 김은미;박희경
    • 한국조리학회지
    • /
    • 제14권1호
    • /
    • pp.170-180
    • /
    • 2008
  • This study was performed to find out the quality characteristics of Noodles by addition of red ginseng powder(0, 2, 4, 6, 8%). The quality characteristics of the sample were estimated in terms of general com-position, color difference, cookery characteristics(water absorption, volume of cooked noodles, turbidity), texture profile analysis and sensory evaluation. The protein, lipid, ash, Na and water binding capacity did not show significant difference in any of the groups. In red ginseng powder added groups, moisture contents, a and b values significantly increased but L value considerably decreased(p<0.05). The weight, volume, water absorption of the cooked noodles and turbidity of 8% of red ginseng powder added group were significantly higher than the control group(p<0.05). In texture profile analysis, adhesiveness, gumminess, hardness and springiness significantly decreased(p<0.05) with more red ginseng powder added. Chewiness and cohesiveness significantly(p<0.05) increased with the 4, 6, 8% of red ginseng powder added. In sensory evaluation, surface color was very good in the 8% red ginseng powder added group while taste and flavor of red ginseng were very good except the 8% red ginseng powder added group(p<0.05). Appearance and overall quality were highest in the 4% red ginseng powder added group(p<0.05). Therefore, noodles containing 4% red ginseng powder were most preferable.

  • PDF

토양/대수층 처리를 이용한 깨끗하고 안전한 도심하천 유지용수 확보 기술 (Application of soil aquifer treatment to secure clean and safe river water in urban watershed)

  • 김정우;차성민;최희철
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.409-411
    • /
    • 2008
  • Water conveyance from waste water treatment plant can play a role in securing river water quantitatively in urban watershed, but it can also cause more severe contamination of river water due to lack of water quality management. Soil aquifer treatment(SAT) has been introduced to overcome the worsening water quality in the water conveyance system considering the characteristics of Korean urban watershed. The application of SAT to the water conveyance system not only improve water quality of ordinarily discharged water but also prevent accidential water pollution to the urban watershed. Since most domestic urban watersheds are consist of narrow terrace lands and surrounded by roads, SAT is estimated not to be appropriate to the urban watershed with respect to the quantitative efficiency. However, since the upstream of urban watershed in which discharge ports are located usually consists of agricultural lands, SAT can be applied near discharge ports. Therefore, combination of water conveyance and SAT is expected to supply clean and safe river water in urban watershed.

  • PDF

Assessment of water quality in an artificial urban canal: A case study of Songdo City in South Korea

  • Ahn, Jungkyu;Na, Yeji;Park, Sung Won
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.582-590
    • /
    • 2019
  • Currently, the waterfront facility was constructed in New Songdo City, South Korea. It has the various water leisure areas and especially an artificial urban canal with filtered seawater by re-circulating flow system. However, due to excessive amount of nutrients from seawater combined with complicated geometry, it is highly vulnerable to deterioration of water quality. In this study, flow characteristics and pollutant transport were analyzed with comprehensive numerical models, MIKE 3 FM and ECO-lab. Based on these numerical results, notable sampling points were selected for field measurements and comparison between modeling and measured results were conducted. In addition, the integrated water quality evaluation index, Water Quality Index was applied to analyze various water quality issues. We also set up scenarios to control the two kinds of water quality factors, dissolved oxygen (DO), and total phosphorus (TP). As a result, the effect of 20% reduction of TP was less than 10% and it was almost ineffective for a year but it was reduced by up to 40% in case of scenario which DO is increased by 20%. Therefore, it was recommended to control the DO concentration, usually by applying re-aeration facility, rather than TP in artificial urban canal with seawater.

다변량 통계기법을 이용한 시·공간적 수질변화의 평가: 임진강유역에 관한 연구 (Assessment of Spatiotemporal Water Quality Variation Using Multivariate Statistical Techniques: A Case Study of the Imjin River Basin, Korea)

  • 조용철;이수웅;류인구;유순주
    • 대한환경공학회지
    • /
    • 제39권11호
    • /
    • pp.641-649
    • /
    • 2017
  • 본 연구에서는 오염원의 변화 특성이 다양한 임진강유역을 대상으로 통계분석을 이용하여 상관분석, 주성분 및 요인분석, 군집분석을 통해 수질특성을 파악하였다. 신천3 지점의 평균 수질농도가 BOD 13.4 mg/L, COD 19.9 mg/L, TN 11.145 mg/L, TP 0.336 mg/L, TOC 14.2 mg/L로 높게 나와 전체 유역 중 신천 유역에 대한 집중적인 수질관리가 필요한 것으로 나타났다. 전체 수질측정 자료의 상관분석 결과 COD는 TOC, BOD, TN 수질인자와 유의한 상관관계를 보여 유기물과 영양염류인자간의 상관성이 높은 것으로 나타났다. 주성분분석 결과 전체 측정소 자료는 81.221%로 2개의 주성분, 계절별 자료는 96.241%로 3개의 주성분이 추출되었다. 요인분석 결과 전체 측정소 자료와 계절별 자료의 수질영향 요인은 공통적으로 BOD, COD, TN, TP, TOC 항목이 나타났다. 시 공간적 군집분석 결과 계절별 특성 및 토지이용에 따라 각각 4개, 3개 그룹으로 나타났다. 본 연구는 임진강유역을 중심으로 8년간 시 공간적 특성을 고려한 수질 요인을 분석한 것으로 향후 유역환경변화에 따른 임진강 유역의 수질 변화를 이해하기 위한 기초 분석 자료가 될 것이다.

앙상블 유출 예측기법을 적용한 하천 수질 예측 (Water Quality Forecasting of the River Applying Ensemble Streamflow Prediction)

  • 안정민;류경식;류시완;이상진
    • 한국물환경학회지
    • /
    • 제28권3호
    • /
    • pp.359-366
    • /
    • 2012
  • Accurate predictions about the water quality of a river have great importance in identifying in-stream flow and water supply requirements and solving relevant environmental problems. In this study, the effect of water release from upstream dam on the downstream water quality has been investigated by applying a hydological model combined with QUAL2E to Geum River basin. The ESP (Ensemble Stream Prediction) method, which has been validated and verified by lots of researchers, was used to predict reservoir and tributary inflow. The input parameters for a combined model to predict both hydrological characteristics and water quality were identified and optimized. In order to verify the model performance, the simulated result at Gongju station, located at the downstream from Daecheong Dam, has been compared with measured data in 2008. As a result, it was found that the proposed model simulates well the values of BOD, T-N, and T-P with an acceptable reliability.

목포항 수질의 계절적 변화 특성 I. 물리 환경과 유기 오염 (The Characteristics of Seasonal Variations of Water Quality in Mokpo Harbour 1. Physical Environment and Organic Pollution)

  • 김광수
    • 해양환경안전학회지
    • /
    • 제5권2호
    • /
    • pp.57-65
    • /
    • 1999
  • The in situ observations and the seawater analyses were conducted at all seasons from July 1996 to April 1999 for the purpose of describing the characteristics of seasonal variations of water quality in Mokpo harbour, Korea. Vertical stratification started to be formed in water column in spring, developed in summer and disappeared in fall. In summer, vertical density distribution of water column was found to be in stable structure with lower temperature and higher salinity of bottom water, and the vertical mixing of water between surface and bottom layers was restricted. In winter, however, surface water was found to be similar to bottom water in temperature and salinity, and water column was in unstable structure and in well-mixed condition between surface and bottom waters. The saturation percentage of dissolved oxygen(DO) in bottom water of inner part of Mokpo harbour at all seasons was shown to be decreased to the third grade or under the third grade of Korean standards of seawater quality. In particular, dissolved oxygen was oversaturated in surface water and undersaturated in bottom water in summer, due to stratification and organic pollution. The difference of DO concentration between surface and bottom waters was found to be greater in spring and summer than in fall and winter, due to stratification and photosynthesis of phytoplankton. The concentrations of chemical oxygen demand(COD) over the entire waters of Mokpo harbour were found to fluctuate from below the third grade to the first grade of Korean standards through all seasons and COD concentrations of same seasons were shown to be different year after year. In particular, in view of COD, the annual average seawater quality of Mokpo harbour was evaluated to be in third grade of Korean standards, due to organic pollution. The average COD of surface water was greater than that of bottom water in spring and summer, due to the autochthonous COD caused by production of phytoplankton in surface waters, while the average COD of surface water was similar to that of bottom water in fall and winter, due to the vertical mixing of water between surface and bottom layers.

  • PDF

공동주택 지하저수조의 수질변화 및 부식성 특성 (Water Quality Variation and Corrosion Index Characteristics of Underground Reservoir in Apartment)

  • 장준영;김주원;황유훈;김기팔;신현상;임병란
    • 한국물환경학회지
    • /
    • 제38권6호
    • /
    • pp.275-281
    • /
    • 2022
  • To maintain water quality after water treatment, monitoring whether the quality of treated tap water quality changes is essential. However, current investigations are insufficient to prevent secondary contamination in drinking water supply systems. This study investigated Gyeonggi's e apartment where a red water problem occurred and monitored the water quality and corrosiveness of the overall water supply system to the apartment from June 2021 to April 2022. In a comparison of drinking water quality after water treatment and the influent of the reservoir, turbidity and heavy metal concentrations were increased and residual chlorine was decreased due to increases in temperature. Correlation analysis and principal component analysis (PCA) indicated that a low level of residual chlorine may cause the abscission of Mn2+ and Fe2+ through microorganism activation, which also causes a high level of turbidity. The corrosion index (LI) in the influent of the reservoir tank was increased due to Ca2+ and temperature. These results indicate that the corrosiveness of drinking water and the deterioration of drinking water quality were mainly increased between the drinking water treatment plant and the reservoir tank's influent. The findings provide clear evidence that it is essential to manage water supply systems and reservoir tanks to prevent the secondary contamination of drinking water.

농업용저수지와 다목적댐의 계절별 수질인자의 특성 비교분석 (Comparative Analysis on Seasonal Water Quality Factors in Multipurpose Dams and Agricultural Reservoirs)

  • 김응석;심규범;김태승;정동환;윤조희;강두기;김상단
    • 한국물환경학회지
    • /
    • 제28권1호
    • /
    • pp.102-108
    • /
    • 2012
  • This study has performed comparative analysis on characteristics of reservoirs in their use through correlation analysis on seasonal variation of water quality factors in agricultural reservoirs and multipurpose dams. Agricultural reservoirs show the high relationship between Chl-a and other water quality factors while the correlation among COD, BOD, and SS is strong in multipurpose dams. Agricultural reservoirs have the high relationship between various water quality factors in season such as Chl-a and pH ($R^{2}=0.294$) in Spring, pH and water temperature ($R^{2}=0.246$) in Summer, and Chl-a and BOD ($R^{2}=0.435$) in Fall, and between COD and BOD ($R^{2}=0.370$) in Winter, respectively, for Sapgyo reservoir while Chl-a and T-P ($R^{2}=0.739$) in Spring, T-P and SS ($R^{2}=0.876$) in Summer, and Chl-a and SS ($R^{2}=0.600$) in Fall, and between COD and SS ($R^{2}=0.998$) in Winter, respectively, for Seokmun reservoir. Boryeong dam has the strong relationship between T-P and SS ($R^{2}=0.511$) in Spring while the relation between COD and SS is high in other seasons with the values of $R^{2}$ of 0.362, 0.665, and 0.500 in Summer, Fall, and winter, respectively. The first and second water quality factors in relationship are COD and BOD in Sapgyo and Seokmun reservoirs, which is similar to the characteristics in Winter for multipurpose dams. Chl-a has no relationship with other water quality factors in Boryeong dam in operation for both flood control and low water regulation purposes. The result of this research is expected to provide contributions to the seasonal water quality control and analysis on characteristics for each reservoir by monitoring.