• Title/Summary/Keyword: Water purification plant

Search Result 208, Processing Time 0.024 seconds

Application of Ceramic MF Membrane at the Slow Sand Filtration Process (완속모래여과 공정에서 세라믹 MF 막의 적용)

  • Choi, Kwang-Hun;Park, Jong-Yul;Kim, Su-Han;Kim, Jeong-Sook;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.877-882
    • /
    • 2013
  • The application of ultrafiltration (UF) and microfiltration (MF) membranes has been increased for drinking water purification. The advantages of UF/MF membrane process compared to conventional treatment processes are stable operation under varying feed water quality, smaller construction area, and automatic operation. Most membrane treatment plants are designed with polymeric membranes. Recently, some studies suggested that the process of treating surface water with ceramic membranes is competitive to the application of polymeric membranes. Higher water flux, less frequent cleaning, and much longer lifetime are the advantages of ceramic membrane comparing to polymeric membrane. Therefore, this research focused on the application of ceramic MF membrane pilot plant at the slow sand filtration plant. The ceramic membrane pilot plant has three trains that used raw water and sand filtered water as a feed water, respectively. For optimizing the pilot plant process, the coagulation with PACl coagulant was used as a pretreatment of ceramic membrane process. In addition, CEB (Chemical Enhanced Backwash) process using $H_2SO_4$ and NaOCl was used for 1.5 days, respectively. The experimental results showed that applying the optimum coagulant dose before membrane filtration showed enhancing membrane fluxes for both raw water and sand filtered water. Also, when using raw water as a feed of membrane, minimum fouling rate was 2.173 kPa/cycle with 25 mg/L of PACl and when using sand filtered water, the minimum fouling rate was 0.301 kPa/cycle with 5 mg/L of PACl.

A Study on Application and Verification of Heavy Water Treatment Effects Using Plant Cultivation (Vegetation) on Floating Island (식생섬에 의한 중수처리 효과 검증과 적용에 관한 연구)

  • Kwon, Dong Min;Kwon, Soon Hyo;Koo, Bon Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.6
    • /
    • pp.53-59
    • /
    • 2012
  • This this study was conducted with the aim of doing experiment on the effect of water purification by using an artificially built plant island, which is one of the eco-techniques, and aquatic plants as a plan for the reuse of water for obtaining water resources, thereby analyzing the removed quantity, and applying the experimental results to the reuse of water. As a result of doing experiments, this study obtained a good measured value of BOD (biochemical oxygen demand) 4.7mg/L, and COD (chemical oxygen demand) 7.2mg/L below the heavy water standard of BOD 10mg/L and COD 20mg/L, respectively. The chromaticity showed 89.2% removal efficiency, but final treated wastewater was found to show chromaticity 58 degrees exceeding chromaticity 20 degrees which are the water quality standard of the reuse of water. The results revealed that T-N produced 27% removal efficiency on an average while T-P produced 38% removal efficiency on an average, showing that the removal effect of N & P wasn't big. According to the currently enforced "Water Quality Standard of Heavy Water by Use", the use of water for sprinkling and landscaping was found to be available. Accordingly, this study suggested a nature-friendly, economically-efficient, and eco-technological water treatment technique which will make it possible to overcome the limit of the existing physio-chemical water treatment technology, reduce the costs for maintenance and facilities, and also reduce the limit of space restraint for installation of facilities.

Development of Constructed Wetland using Sand and Oyster shell for Sewage Treatment (모래와 굴패각을 이용한 인공습지 오수처리장치 개발)

  • Park, Hyun-Geoun;Lee, Chun-Sik;Lee, Hong-Jae;Seo, Dong-Cheol;Heo, Jong-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.437-446
    • /
    • 2004
  • To develop sewage treatment apparatus by natural purification method, the sewage treatment plant that consisted of aerobic and anaerobic plot was constructed. And then, the effects of treatment conditions on the removal of pollutants in the relation to sewage loading, sewage injection method and season according to the pebble kind. Removal rate of BOD and COD according to the sewage loading in effluent were over 95 and 77%, respectively. Removal rate of nitrogen in treated water by aerobic plot and effluent using sand were about 22~40 and 49~75%, respectively. Those of effluent using sand 75%+ oyster shell 25% and sand 50%+ oyster shell 50% as filter media in comparison with using sand were about 7~25 and 16~23%, respectively. Removal rate of phosphorus in treated water by aerobic plot and effluent using sand as filter media were about 30~36 and 52~56%, respectively. Those of effluent using sand 75%+ oyster shell 25% and sand 50%+ oyster shell 50% in comparison with using sand as filter media were about 11~40 and 12~45%, respectively. Removal efficiency of BOD and COD according to the intermittent injection method of sewage were slightly decreased, but those of nitrogen and phosphorus were little varied in comparison with continuous injection method. Removal efficiency of BOD and COD in winter in comparison with the others were little varied, but those of nitrogen and phosphorus slightly decreased.

The role of domestic tap water in Acanthamoeba contamination in contact lens storage cases in Korea

  • JEONG Hae Jin;YU Hak Sun
    • Parasites, Hosts and Diseases
    • /
    • v.43 no.2 s.134
    • /
    • pp.47-50
    • /
    • 2005
  • A survey was carried out from August to December 2004 in Pusan, Korea to document the presence of free-living amoeba (FLA), including the genus Acanthamoeba, in both contact lens storage cases and domestic tap water. Acanthamoeba was isolated from $5(4.2\%)$ in 120 contact lens storage cases. Four house tap water samples from residents, whose contact lens storage cases had been contaminated by Acanthamoeba, were also found to be contaminated with Acanthamoeba. Therefore, the contamination rate of FLA and Acanthamoeba in domestic tap water was investigated in order to examine the role of domestic tap water in Acanthamoeba contamination of contact lens storage cases. FLA and Acanthamoeba were identified in $97(46.8\%)\;and\;16(7.7\%)$ of the 207 domestic tap water samples, respectively. There were no significant differences between the contamination rates of FLA in tap water according to the filtration plant of origin. No FLA was detected in the tap water directly supplied by the water purification plants. Water storage tanks appear to promote FLA colonization, including Acanthamoeba, in domestic tap water. This increases the risk of Acanthamoeba contamination in contact lens storage cases as well as increasing the risk of Acanthamoeba keratitis.

Efficiency of Removal of Indoor Pollutants by Pistia stratiotes, Eichhornia crassipes and Hydrocotyle umbellata

  • Park, Hye-Min;Lee, Ae-Kyung
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • In this study, we compared efficiency of different aquatic plants in removing indoor pollutants and examined their potential to purify indoor air. Two liter of water in chamber was used as the control, while the other chambers containing water lettuce (Pistia stratiotes), water hyacinth (Eichhornia crassipes), and water coin (Hydrocotyle umbellata) were used as treatment groups. Temperatures inside all the chambers were maintained between 20 ℃ and 23 ℃. Humidity in the chambers with aquatic plants increased by 30% and 50% control respectively. The removal of formaldehyde per unit leaf area was examined in each aquatic plant. It turned out that water hyacinth removed the highest amount of formaldehyde, followed by water lettuce and water coin. Both water hyacinth and water lettuce increased the amount of removal of formaldehyde until the end of the experiment. In the case of airborne dust (PM 10) and fine dust (PM 2.5), water coin, which had the highest number of leaves, removed more PM 10 and PM 2.5 than the other aquatic plants, with statistically significant difference. In addition, both water coin and water hyacinth smoothly opened and closed stomata before and after the experiment. Consequently, as the aquatic plants were effective in controlling humidity and removing pollutants, they can be used as air purifying plants.

Performance of Backwashing Process in Biological Activated Carbon Column (생물활성탄접촉조에서 역세척 공정의 성능)

  • Lee, Gangchoon;Yoon, Taekyung;Moon, Byunghyun;Noh, ByeongIl
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1082-1087
    • /
    • 2006
  • BAC backwashing process in ozone-BAC advanced water treatment process was experimentally studied. The operation and performance of backwashing were evaluated by measuring the effects of water temperature and water input rate on the backwashing interval and duration, and also the change of the amounts of biofilm and HPC in treated water before and after backwashing. The experiments were carried out with the pilot scale test module built in a existing water treatment plant, and the following results were obtained. Longer backwashing time than that of design operating condition was needed for satisfying the suitable turbidity of washing water effluent. Depending on water temperature, 7 days of backwashing cycle was recommended for the period lower than $15^{\circ}C$, and 10 days for the period higher than $15^{\circ}C$. After backwashing, the amounts of biofilm and HPC decreased to 1/10 and 80%, respectively.

Application of HACCP principles to MAR-based drinking water supply system (MAR기반 음용수 공급 시스템에의 HACCP 원리 적용)

  • Ji, Hyon Wook;Lee, Sang-Il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.533-543
    • /
    • 2016
  • Supplying clean and safe water to people is facing both quantitative and qualitative challenges. Due to climate change, access to freshwater becomes increasingly difficult, while pollution from various sources decreases the public trust in water quality. Managed aquifer recharge (MAR) which stores and uses surface water in aquifer is receiving attention as a new technology to secure freshwater. Recently, there is a global expansion in the attempt to combine general purification plants and hazard analysis and critical control point (HACCP) which manages all the process from raw material to consumer for food safety. This research is about an attempt to apply HACCP to the drinking water supply process using MAR to secure both quantity and quality of drinking water. The study site is a MAR plant being constructed in the downstream area of the Nakdong River Basin, South Korea. The incorporation of HACCP with MAR-based water supply system is expected to enhance the safety and reliability of drinking water.

A NEW TREATMENT SYSTEM FOR ANIMAL WASTE WATER USING MICROORGANISM, SOIL AND VEGETATION

  • Oshida, T.;Fukuyasu, T.;Kohzaki, K.;Izumikawa, Y.;Kawanabe, S.;Konishi, S.;Oikawa, N.;Matsumoto, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.2
    • /
    • pp.205-209
    • /
    • 1993
  • A new treatment system for animal waste water has been developed as an alternative to the activated sludge process. It consists of two treatments; one is operated with 7 tanks, and the other is soil and plant cultivation bed. Aerobic microorganisms are added to the influent water in the tanks where the water is aerated so that the microbes utilize the pollutants, while sedimentation removes the indigestible solids. In the secondary treatment the water, which has already received a primary treatment, is filtered through soil where it also receives treatment by soil organisms. In addition there is transpiration of water and absorption of minerals by plants. In the primary treatment BOD, SS, coliforms (E. coli), TP and total bacteria were removed 79-99%, but COD and TN were removed only 58% and 36%, respectively. In the secondary treatment removal of nutrients proceeded further, and 93-99% of pollutants were removed. The treated waters met the quality standard of discharge water in Japan except for TN, which was in too great a concentration to meet discharge standards. This problem requires further study.

Successional changes in plant composition over 15 years in a created wetland in South Korea

  • Son, Deokjoo;Lee, Hyohyemi;Cho, Kang-Hyun;Bang, Jeong Hwan;Kwon, Oh-Byung;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.183-190
    • /
    • 2018
  • Backgrounds: The main purpose of this research was to assess changes in vegetation structure, wetland index, and diversity index for a 15-year-old created wetland in Jincheon, South Korea. The created wetland consists of four sub-wetlands: a kidney-shaped wetland, a ditch, an ecological pond, and a square wetland. Vegetation and water depth data were collected at each site in 1999 and 2013, and Shannon diversity and wetland indices were calculated. Results: The total number of plant species increased from 18 in 1999 to 50 in 2013, and the ecological pond in 1999 and the ditch in 2013 presented the highest diversity indices (2.5 and 3.2, respectively). Plant species were less diverse in 1999 than in 2013, presumably because these initial wetlands were managed periodically for water purification and installation of test beds. The proportion of wetland plants, including obligate wetland and facultative wetland species, decreased from 83 to 56%, whereas upland plants, including obligate upland and facultative upland species, increased from 17 to 44%. After ceasing water supply, water depth in all four sub-wetlands declined in 2013. Thus, upland plants established more readily at these sites, resulting in higher diversity and lower wetland indices than in 1999. Conclusions: The major floristic differences between 1999 and 2013 were an increase in the number of upland plants and a decrease in wetland species. Although wetland indices were lower in 2013, the created wetland performed important ecosystem functions by providing habitats for wetland and upland plants, and the overall species diversity was high.

Purification process and reduction of heavy metals from industrial wastewater via synthesized nanoparticle for water supply in swimming/water sport

  • Leiming Fu;Junlong Li;Jianming Yang;Yutao Liu;Chunxia He;Yifei Chen
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.441-449
    • /
    • 2023
  • Heavy metals, widely present in the environment, have become significant pollutants due to their excessive use in industries and technology. Their non-degradable nature poses a persistent environmental problem, leading to potential acute or chronic poisoning from prolonged exposure. Recent research has focused on separating heavy metals, particularly from industrial and mining sources. Industries such as metal plating, mining operations, tanning, wood and chipboard production, industrial paint and textile manufacturing, as well as oil refining, are major contributors of heavy metals in water sources. Therefore, removing heavy metals from water is crucial, especially for safe water supply in swimming and water sports. Iron oxide nanoparticles have proven to be highly effective adsorbents for water contaminants, and efforts have been made to enhance their efficiency and absorption capabilities through surface modifications. Nanoparticles synthesized using plant extracts can effectively bind with heavy metal ions by modifying the nanoparticle surface with plant components, thereby increasing the efficiency of heavy metal removal. This study focuses on removing lead from industrial wastewater using environmentally friendly, cost-effective iron nanoparticles synthesized with Genovese basil extract. The synthesis of nanoparticles is confirmed through analysis using Transmission Electron Microscope (TEM) and X-ray diffraction, validating their spherical shape and nanometer-scale dimensions. The method used in this study has a low detection limit of 0.031 ppm for measuring lead concentration, making it suitable for ensuring water safety in swimming and water sports.