• Title/Summary/Keyword: Water pipe network

Search Result 185, Processing Time 0.035 seconds

The Development of Dynamic Model for Long-Term Simulation in Water Distribution Systems (상수관망시스템에서의 장기간 모의를 위한 동역학적 모형의 개발)

  • Park, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.325-334
    • /
    • 2007
  • In this study, a long-term unsteady simulation model has been developed using rigid water column theory which is more accurate than Extended-period model and more efficient comparing with water-hammer simulation model. The developed model is applied to 24-hours unsteady simulation considering daily water-demand and water-hammer analysis caused by closing a valve. For the case of 24-hours daily simulation, the pressure of each node decreases as the water demand increase, and when the water demand decrease, the pressure increases. During the simulation, the amplitudes of flow and pressure variation are different in each node and the pattern of flow variation as well as water demand is quite different than that of KYPIPE2. Such discrepancy necessitates the development of unsteady flow analysis model in water distribution network system. When the model is applied to water-hammer analysis, the pressure and flow variation occurred simultaneously through the entire network system by neglecting the compressibility of water. Although water-hammer model shows the lag of travel time due to fluid elasticity, in the aspect of pressure and flow fluctuation, the trend of overall variation and quantity of the result are similar to that of water-hammer model. This model is expected for the analysis of gradual long-term unsteady flow variations providing computational accuracy and efficiency as well as identifying pollutant dispersion, pressure control, leakage reduction corresponding to flow-demand pattern, and management of long-term pipeline net work systems related with flowrate and pressure variation in pipeline network systems

Expert System for Emergency Decision Making for Metro Water Supply Systems (광역상수도 시설의 비상시 의사결정을 위한 전문가시스템)

  • Kim, Eung Seok;Kim, Joong Hoon;Baek, Chun Woo;Lee, Jung Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.103-110
    • /
    • 2007
  • An efficient operational strategy using expert system for metro water supply systems in case of emergency situations is developed in this study. The emergency situations of the water supply systems are classified into three categories : pipeline system accident, machinery and electric facility accident and water quality accident. A PC-based expert system is developed using CLIPS for Seoul metro water supply system, Phase 1 & 2 system and Phase 3 & 4 system. Broad professional knowledges and experiences from the experts in the water supply systems have been collected systematically to construct the knowledge base. Decision-making in case of an emergency is based upon the professional knowledge so that a rational and efficient operational management can be available even in the absence of experienced expert. Especially the expert model developed in this study also provides a guide for pumping operation in case of pipeline accident to confirm that the proper pressure to all nodes in the system is supplied. The pipe network simulator KYPIPE has been consecutively executed by trial and error fashion for each pipeline in the system. The results from KYPIPE were included in the knowledge base to supplement the knowledge of the field engineers.

An Optimal Sewer Layout Model to Reduce Urban Inundation (도시침수 저감을 위한 최적 우수관망 설계 모형)

  • Lee, Jung-Ho;Kim, Joong-Hoon;Jun, Hwan-Don
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.777-786
    • /
    • 2011
  • In the previous researches for storm sewer design, the flow path, pipe diameter and pipe slope were determined to minimize the construction cost. But in the sewer networks, the flows can be changed according to flow path. The current optimal sewer layout models have been focussed on satisfying the design inflow for sewer designs, whereas the models did not consider the occurrences of urban inundation from excessive rainfall events. However, in this research, the sewer networks are determined considering the superposition effect to reduce the inundation risk by controlling and distributing the inflows in sewer pipes. Then, urban inundation can be reduced for excessive rainfall events. An Optimal Sewer Layout Model (OSLM) was developed to control and distribute the inflows in sewer networks and reduce urban inundation. The OSLM uses GA (Genetic Algorithm) to solve the optimal problem for sewer network design and SWMM (Storm Water Management Model) to hydraulic analysis. This model was applied to Hagye basin with 44 ha. As the applied results, in the optimal sewer network, the peak outflow at outlet was reduced to 7.1% for the design rainfall event with 30 minutes rainfall duration versus that of current sewer network, and the inundation occurrence was reduced to 24.2% for the rainfall event with 20 years frequency and 1 hour duration.

Data-based Analysis for Pressure Gauge Optimal Positioning in Water Supply Pipeline (상수관로 압력계 최적 위치선정을 위한 데이터기반 시험분석)

  • Lee, Hohyun;Hong, Sungtaek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.834-840
    • /
    • 2021
  • The management and installation methods of pressure gauges in water supply pipeline are not efficiently regulated and their installations are different in each site. In this paper, various domestic and overseas documents are examined about the pressure gauge. In order to improve the efficiency of operation management such as pipeline network and pump operation, water pressure needs to be measured as accurate as possible, by which decision making for optimal pipe network can be achieved. To get the goal, the installation of pressure gauge should be reviewed about where and how to install. In this study, an optimal horizontal distance test is conducted, in which pressure value variation is monitored and analyzed according to up and down stream distances and valve flow control, and a optimal vertical position test is also analyzed by installing the pressure gauges vertically from the up(180°) to the bottom (0°) of the pipeline.

An Optimal Conjunctive Operation of Water Transmission Systems from Multiple Sources with applying EPAnet and KModSim Model (KModSim 모형(模型)에 의한 도시지역(都市地域) 다중수원(多衆水源) 송수관망간(送水管網間) 최적(最適) 연계(連繫) 운영(運營) 연구(硏究))

  • Ryu, Tae-Sang;Cheong, Tae-Sung;Ko, Ick-Hwan;Ha, Sung-Ryong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.500-504
    • /
    • 2008
  • The objective of this paper is to evaluate the feasibility of using an optimization model as a effective way to search conjunctive operation scheme to meet two conditions; one is to minimize the electric cost for pumping and another is to meet the water demand for satisfying customers. The feasibility is confirmed as comparing the best combinations of pumps between multi-regional water supply networks from multiple sources which are obtained through an optimization modeling and EPAnet modeling. KModsim model, a network optimization model, was used to determine conjunctive operation scheme in the pipe system. KModsim, based on Lagrangian Relaxation algorithm, is useful for modeling network system and obtaining simultaneously pump combination and water allocation with given input option such as energy unit cost supplying from a source into a consumer, operating pumping combination. This study develops the procedure of determining optimal conjunctive operation scheme with using KModsim model. As a study region, the water supplying systems of the Geojae-city in the Geongsang Namdo Province was selected and investigated. The EPAnet hydraulic simulation result(Ryu et al, 2007, KSWW) gave input data for optimization model; energy unit price(won/$m^3$), water service available area etc.. It was assured that the combination of pump operation through optimum conjunctive operation is to be optimum scheme to obtain the best economic water allocation with comparison to the hydraulic simulation result such as electric cost and pump combination cases. The results obtained through the study are as follows. First, It was found that a well-allocated water supply scheme, the best combination of pump operation through optimum joint operation, promises to save the electric cost and satisfy all operational goals such as stability and revenues during the period. Second, an application of KModSim, a network model, gave the amount of water allocation from each source to a consumer with consideration of economic supply. Finally, in a service area available to supply through conjunctive operation of existing inter-regional water supply networks within short distance, a conjunctive operation is useful for determining each transmission pipeline's service area and maximizing the effectiveness of optimizations in pumping operation time.

  • PDF

A Study on the Component Design for Water Network Analysis (상수도 관망해석 컴포넌트 설계에 관한 연구)

  • Kim, Kye-Hyun;Kim, Jun-Chul;Park, Tae-Og
    • Journal of Korea Spatial Information System Society
    • /
    • v.2 no.2 s.4
    • /
    • pp.75-84
    • /
    • 2000
  • GIS has been building for various application fields with the aids of NGIS project, especially numerous municipal governments are building a UIS in the level of local governments' informatization. Although there are some difference between municipal governments' business, still many things are in common. So far, individual municipal governments have developed a UIS for their own use, which lead to duplicated development of the UIS. The component technology has been introduced to remove such duplicated efforts and it enabled maximizing the reusablilty of the UIS already developed. This paper proposes a component design for network analysis of the drinking water to calculate the amount of flow and the head loss. This component design provides the initial water amount to estimate the amount of the network flow and the head loss, thereby supports the decision making such as installation or extension of the pipe network. The process of the component design accompanies the business reengineering to support the standardized business work flow. Also, the design of the network analysis component uses the algorithms induced with UML specification. Based on the component design, the component development has been progressing and the network analysis system would be followed. In the near future, another component to integrate the network analysis and the business related to the drinking water needs to be developed.

  • PDF

Evaluation of Risk Factors in Water Supply Networks using PROMETHEE and ANP (PROMETHEE와 ANP 기법을 활용한 상수도관망의 위험요소 평가)

  • Hong, Sung-Jun;Lee, Yong-Dae;Kim, Sheung-Kown;Kim, Joong-Hoon
    • IE interfaces
    • /
    • v.19 no.2
    • /
    • pp.106-116
    • /
    • 2006
  • In this study, the priority of risk factors in supplying water through water supply pipeline network was evaluated by PROMETHEE and ANP multi-criteria decision analysis. We chose 'corrosion', 'burst' and 'water pollution' in pipe as major reference criteria and selected eight risk factors to evaluate the priority, and then we compared the results of PROMETHEE with those of ANP. We also analyzed the results of the sensitivity analysis by changing the weights and parameters of preference functions in PROMETHEE. We investigated the possibility of integrating two methods by using the results of ANP as the weights of preference function in PROMETHEE. The priority of risk factors for supplying municipal water which is evaluated by this study may provide basic data to establish a contingency plan for accidents, or to establish the specific emergency response procedures.

Examination on High Vibration of Recirculation System for Feed Water Piping in Combined Cycle Power Plant (복합 발전소 주급수 재순환 배관계의 고진동 현상 및 대책)

  • Kim, Yeon-Whan;Kim, Jae-Won;Park, Hyun-Gu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.648-654
    • /
    • 2011
  • The feed-water piping system constitutes a complex flow impedance network incorporating dynamic transfer characteristics which will amplify some pulsation frequencies. Understanding pressure pulsation waves for the feed-water recirculation piping system with cavitation problem of flow control valve is very important to prevent acoustic resonance. Feed water recirculation piping system is excited by potential sources of the shock pulse waves by cavitation of flow control valve. The pulsation becomes the source of structural vibration at the piping system. If it coincides with the natural frequency of the pipe system, excessive vibration results. High-level vibration due to the pressure pulsation affects the reliability of the plant piping system. This paper discusses the piping vibration due to the effect of shock pulsation by the cavitation of the flow control valves for the recirculation piping of feed-water pump system in combined cycle power plants.

  • PDF

Optimization of Branched Irrigation Pipe Network Design (분기형 농업용 관수로 설계 최적화)

  • Chung, Gun-Hui;Kim, Young-Hwa;Jeon, Geon-Yeong;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.222-222
    • /
    • 2011
  • 안전한 수질의 용수를 안정적으로 공급하기 위해 대단위 농업단지를 중심으로 농업용 관수로 건설이 고려되고 있는 환경에서 보다 경제적으로 관수로를 건설하기 위한 연구가 수행되었다. 관수로의 최적 관경설계는 전통적으로 비선형성을 고려하여야 하므로 수리학적 해석모형과 추계학적 탐색기법을 이용한 연구가 수행되었다. 그러나 본 연구에서는 비선형성을 가진 최적 관경시스템의 선형화를 시도한 후, 농지이용에 따른 대표작물에 대한 설계용수량을 사용한 농업용 관수로 관경 최적화를 시도하였다. 제안된 모형을 이용하여 농지의 크기, 작물의 형태, 동수경사선의 기울기에 따라 적합한 관경을 산정하였으며, 그 결과를 이용한 설계 표준화를 시도하였다. 표준화된 설계지침을 이용하면 향후 보다 편리하게 농업용 관수로를 설계할 수 있을 것으로 판단된다. 또한 실제 관수로에의 적용성을 입증하기 위해 실제 건설되는 농업단지의 설계에 제안된 모형을 이용하고, 시행착오법으로 산정된 결과와 비교하여 그 경제성을 입증하였다.

  • PDF

Optimal design of pumps and pipe network of interconnected pumping wells (군정 시스템의 펌프와 관망의 최적 설계)

  • Jang, Chi Woong;Park, Namsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.208-208
    • /
    • 2015
  • 다수의 양수정이 연결된 군정은 복수 개의 펌프와 상당한 길이의 관수로 구성된다. 이 때 펌프-관망 시스템의 생애주기 비용의 최소화를 위하여 재료비, 시공비 등이 고려된 초기비용과 양수정 가동을 위한 에너지비용으로 구성되는 운영비용을 최소화하기 위한 기법을 연구하였다. 이 두 가지 비용은 서로 반비례 하는 형상을 띄고 있다. 따라서 관망의 각 요소와 펌프의 종류 및 소요 동력을 감안하여 설계해야 한다. 가령, 직경이 커질수록 펌프가 제공해야 하는 양정이 줄어들어 소요 동력 비용은 줄어들지만 초기 설치비가 증가하므로 이들의 상관관계를 알아내어 적절한 균형을 찾아내야 할 것이다. 본 연구에서 고려한 최적화 결정변수는 관경과 펌프 사양이다. 펌프-관망 시스템 최적화의 제약 조건에는 별도의 지하수 관정 최적설계 기술로 도출된 관정들의 위치, 양수량 분포, 그리고 각 양수정의 수위이다. 최적화 기법으로는 유전자 방법을 사용하였다.

  • PDF