• Title/Summary/Keyword: Water permeation

Search Result 479, Processing Time 0.019 seconds

Dissolution and Duodenal Permeation Characteristics of Lovastatin from Bile Salt Solid Dispersions (담즙산염과의 고체분산체로부터 로바스타틴의 용출 및 십이지장 점막 투과 특성)

  • Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.2
    • /
    • pp.97-106
    • /
    • 2009
  • Although lovastatin (LS) is widely used in the treatment of hypercholesterolemia, its bioavailability is known to be around 5%. This study was aimed to increase the solubility and dissolution-permeation rates of LS using solid dispersions (SDs) with bile salts. The solubilities of LS in water, aqueous bile salt solutions and non-aqueous vehicles were determined, and effects of bile salts on the cellulose or duodenal permeation of LS from SDs were evaluated using a horizontal permeation system. SDs were prepared at various ratios of LS to carriers, such as sodium deoxycholate (SDC), sodium glycocholate (SGC) and/or 2-hydroxypropyl-$\beta$-cyclodextrin (HPCD). The addition of bile salts (25 mM) in water increased markedly the solubility of LS by the micellar solubilization. Some non-aqueous vehicles were effective in solubilizing LS. From differential scanning calorimetric studies, it was found that the crystallinity of LS in SDs disappeared, indicating a formation of amorphous state. The SDs showed markedly enhanced dissolution compared with those of their physical mixtures (PMs) and drug alone. In the dissolution-permeation studies using a cellulose membrane, the donor and receptor solutions were maintained as a sink condition using pH 7.0 phosphate buffer containing 0.05% sodium lauryl sulfate (SLS). The flux of LS alone was nearly same as that of LS-SDC-HPCD (1:3:6) PM. However, the flux of LS-SDC-HPCD (1:3:6) SD slightly increased compared with drug alone and PM, suggesting that entrapment of LS in micelles does not significantly hinder the permeation across cellulose membrane. In the dissolution-duodenal permeation studies using a LS-HPCD-SDC (1:3:6) SD, the addition of various bile salts in donor solutions (25 mM) enhanced the permeation of LS markedly, and the fluxes were found to be $0.69{\pm}0.41$, $0.87{\pm}0.51$, $0.84{\pm}0.46$, $0.47{\pm}0.17$ and $0.68{\pm}0.32{\mu}g/cm^2/hr$ for sodium cholate (SC), SDC, SGC, sodium taurodeoxycholate (STDC) and sodium taurocholate (STC), respectively. The stepwise increase of donor SGC concentration increased the flux dose-dependently. From the relationship of donor SGC concentration and flux, the concentration of SGC initiating the permeation across the duodenal mucosa was calculated to be 11.1 mM, which is nearly same as the critical micelle concentration (CMC, 11.6 mM) of SGC. However, with no addition of bile salts and below CMC, the permeation was very limited and irratic, indicating that LS itself is very poor permeable. Higher protions of bile salt in SD such as LS-SDC or LS-SGC (1 : 49 and 1 : 69) showed highly promoted fluxes. In conclusion, SD systems with bile salts, which may form their micelles in intestinal fluids, might be a promising means for providing enhanced dissolution and intestinal permeation of practically insoluble and non-absorbable LS.

Skin Permeation Characteristics of Antihyperlipoproteinemic Agent using Natural Polymer Bases in Rats (천연고분자 기재에 의한 수용성 항고지단백혈증제의 흰쥐 피부투과 특성)

  • Kong, Seung-Dae;Hwang, Sung-Kwy;Jung, Duck-Chae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.126-131
    • /
    • 2000
  • Transdermal therapeutic system(TTS) is often used as the method of drug dosage into the epidermic skin. Natural polymer were selected as ointment material of TTS. We investigated the permeation of natural polymer ointment containing drug in rat skin using horizontal membrane cell model. Permeation properties of materials were investigated for water-soluble drug such as oxiniacic acid in vitro. These results showed that skin permeation rate of drug across the composite was mainly dependent on the property of ointment base and drug. Proper selection of the polymeric materials which resemble and enhance properties of the delivering drug was found to be important in controlling the skin permeation rate. This result suggests a possible use of natural polymer ointment base as TTS of antihyperlipoproteinemic agent.

Rat Skin Permeation of Diclofenac and its Prodrugs (디클로페낙 프로드럭들의 흰쥐 피부 투과)

  • Doh, Hea-Jeong;Cho, Won-Jea;Yong, Chul-Soon;Lee, Chi-Ho;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.2
    • /
    • pp.95-100
    • /
    • 2001
  • Various alkyl ester prodrugs of diclofenac were synthesized in order to investigate the relationship between their skin permeation characteristics and physicochemical properties. Solubility in various vehicles was measured at room temperature. 1-Octanol/water partition coefficients (Log P) and capacity factors (k') were measured to determine the lipophilicity of the prodrugs. Stability of prodrugs in the skin extract and homogenate was also investigated before conducting the skin permeation studies. Increases in the Log P and capacity factor values were observed when alkyl esters of diclofenac were prepared. Since the aqueous solubility of the prodrugs was not high enough, they were saturated in propylene glycol (PG) for skin permeation studies. Prodrugs were rapidly metabolized to diclofenac, both in skin homogenate and in dermal extract of skin. The skin permeation rate of alkyl ester prodrugs was significantly higher than diclofenac with shorter lag time. Moreover, a parabolic relationship was observed between the permeation rate and the log P values of prodrugs, and the maximum flux was achieved at a log P value of around 4.0.

  • PDF

Study on Performance of Water Vapor-Permeation Through Hydrophilic Polymer Membranes (친수성 고분자 막을 이용한 수증기 투과 성능에 관한 연구)

  • Rhim Ji-Won;Yun Tae-Il;Seo Moo-Young;Cho Hyun-Il;Ha Seong-Yong
    • Membrane Journal
    • /
    • v.16 no.2
    • /
    • pp.115-122
    • /
    • 2006
  • In this study the membrane preparation and water vapor permeation of the hydrophilic polymer materials, polyaminosiloxane and polyhydroxylsiloxane, used as the coating materials for the preparation of asymmetric flat and hollow fiber membranes were investigated. And the water vapor permeation towards air permeation and their permselectivity were intensively studied for the resulting Resin A/Resin C (coupling agent) and Resin B/Resin C membranes. The water vapor permeability for 3 wt% Resin C introduced into Resin A (Resin A/Resin C) membrane was higher than for 1 and 5 wt% membranes and also water vapor permeability increased with increasing operating temperatures. In addition, at this content of 3 wt% Resin C, the absorption capability became maximum through dynamic equilibrium absorption experiment. Water vapor permeability, 43578 Barrer (1 Barrer = $10^{-10}cm^3(STP){\cdot}cm/cm^2{\cdot}s{\cdot}cmHg$) and 53000 Barrer, and the selectivity of $P(H_2O)P(Air)$, 101.3 and 102.6 were shown at 25 and $35^{\circ}C$, respectively.

Transdermal Permeation of Xanthan Gum Bases on the Water-soluble and Lipophilic Antihyperlipoproteinemic Drugs (수용성과 지용성 항고지단백혈증제에 대한 Xanthan Gum 기재에서의 경피투과)

  • 이석우;임윤택;공승대;황성규;이우윤
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.253-258
    • /
    • 2001
  • Recently, there were many studies not only to enhance drug delivery effect but to reduce side effect. Drug delivery system(DDS) is able to improve efficiency with decreasing side effect of drug dosage. Among these application fields, DDS is often used as the method of drug dosage into the epidermic skin. We investigated characters of transdermal therapeutic system(TTS) and the skin permeability of that with applying DDS. We investigated the permeation of xanthan gum containing drug in rat skin using borizontal membrane cell model. Permeation properties of materials were investigated for water-soluble drug with oxiniacic acid and also for lipophilic drug with clofibrate. The permeation rate of lipophilic drug was found to be faster than that of water-soluble drug in vitro. The rate differences of both water-soluble drug and lipophilic drug according to drug content were negligible. We used glycerin, PEG 600 and oleic acid as enhancers. These results showed that skin permeation rate of each drug across the composite was mainly dependent on the property of base and chemical property of drug etc.. Proper selection of the polymeric materials which resemble and enhance properties of the delivering drug was found to be important in controlling the skin permeation rate. This result suggests a possible use of natural polymer base as a transdermal delivery system of antihyperlipoproteinemic agent.

  • PDF

Effect of Electrolyte Concentration on Water Permeation in Protective Coatings (방식도막에 있어서 물의 침투에 대한 전해질 용액의 영향)

  • 박진환
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.206-212
    • /
    • 1998
  • The water permeation in protective coatings, which may greatly influence the corrosion protective property of these coatings, was studied using the electrochemical impedance spectroscopy technique. During the absorption of water in protective coatings immersed in electrolyte solution, the change of coating capacitance with concentration of electrolyte was determined from impedance measurements. When water absorption or desorption of coatings occured by exposing the coatings to electrolyte solutions of different concentration, increase in impedance caused by desorption of water was found to be higher in the case of thicker film. The amount of water absorbed in coatings changed with concentration of electrolyte. The water taken up in coatings from the solution of lower electrolyte concentration was deserted by contact with the solution of higher concentration. The uptake of water in protective coatings varied depending on the type of coating ingredient especially binder.

  • PDF

Skin Permeability of piroxicam Gel by Phonophoretic Transdermal Drug Delivery (음파영동 경피약물수송에 의한 Piroxicam Gel의 경피투과)

  • Choi Suk-Joo;Oh Myung-Hwa;Kim Tae-Youl
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.4
    • /
    • pp.147-162
    • /
    • 2002
  • Transdermal permeation enhancer has been used to increased skin absorption. External control of drug release and skin absorption can also be achieved by iontophoresis or phonophoresis. However, because several problems with iontophoresis are that it has a risk to skin damage because of the change of pH and the increase of current density in applying it and that it can be applied only in the form of water solution, This study is to enhance drug permeation via skin following application of ultrasound. For this goal, in gel containing piroxicam, the degree of skin permeation in vitro and anti-inflammatory effect in in vivo were investigated. Permeation study using hairless mouse skin was performed at 37 $^{\circ}C$ using buffer saline as the receptor solution. The amount of piroxicam were quantified using a HPLC system consisting of solvent delivery system. Following adoption of ultrasound 1 MHZ, it showed relatively high permeation rate where it was compared with non treated by ultrasound. The influence of duty cycle having an effect on skin permeation rate was slight higher in the case of using pulsed mode. Skin permeation increase attended by intensity of ultrasound, the permeation of trice was accelerated at 2.0 W/$cm^{2}$ than 1.0 W/$cm^{2}$. The skin permeation of piroxicam was substantially influenced by ultrasound. Anti-inflammatory effects were determined using carrageenan-induced paw swelling method in SD rat. Paw swelling tests showed that pulsed phonophoresis group was more effective than control group and only gel application group. The conclusion of phonophoresis was found to improve significantly the skin permeation in vitro and the anti-inflammatory effect in vivo.

  • PDF

Permeability of (SiO2)1-x(ZnO)x Inorganic Composite Thin Films Deposited as a Passivation Layer of Ca Cell (Ca Cell의 보호막으로 증착된 (SiO2)1-x(ZnO)x 무기 혼합 박막들의 투습 특성)

  • Kim, Hwa-Min;Ryu, Sung-Won;Sohn, Sun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.262-268
    • /
    • 2009
  • We investigated the properties of inorganic diatomic films like silicon oxide ($SiO_2$) and zinc oxide (ZnO) and their composite films are packed as a passivation layer around Ca cells on glass substrates by using an electron-beam evaporation technique and rf-magnetron sputtering method. When these Ca cells are exposed to an ambient atmosphere, the water vapor penetrating through the passivation layers is adsorbed in the Ca cells, resulting in a gradual progress of transparency in the Ca cells, which can be represented by changes of the optical transmittance in the visible range. Compared with the saturation times for the Ca cells to become completely transparent in the atmosphere, the protection effects against permeation of water vapor are estimated for various passivation films. The thin composite films consist of$SiO_2$ and ZnO are found to show a superior protection effect from water vapor permeation compared with diatomic inorganic films like $SiO_2$ and ZnO. Also, this inorganic thin composite films are also found that their protection effect against permeation of water vapor can be significantly enhanced by choosing their suitable composition ratio and deposition method, in addition, the main factors affecting the permeation of water vapor through the oxide films are found to be the polarizability and the packing density.

Establishment of a Release Test Reflecting in vitro Skin Permeation of Nicotine from Commercial Patches (니코틴 패취제로부터 니코틴의 피부투과를 반영하는 방출시험법의 설정)

  • Lee, Su-Jung;Kim, Jae-Keun;Yun, Mi-Ok;Kim, Ho-Jeong;Shim, Chang-Koo;Ze, Keum-Ryon
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.1
    • /
    • pp.27-32
    • /
    • 2000
  • Various release test methods have been applied for the evaluation of nicotine release in vitro from commercial patches. However, whether and how the release data reflect the permeation of nicotine across the skin, is not fully elucidated. To predict in vivo bioavailability from in vitro release tests, correlation between in vitro release and in vitro skin permeation was assessed in the present study. Release of nicotine from three commercial patches was measured for 24 hours under nine experimental conditions which were classified depending on the apparatus (i.e., paddle over disk, cylinder and reciprocating holder) and dissolution media (i.e., phosphate buffer pH 7.4, water and the 1 % phosphoric acid pH 1.5). In vitro permeation of nicotine from the patches across the human cadaver skin was also measured using a diffusion cell. The release of nicotine was better explained by the Higuchi's equation rather than by the first order rate equation. Correlation between the release rate and the in vitro skin permeation differed among the patches. However, in general, the cylinder method, in which water is used as a dissolution medium, showed the highest correlation among the nine release test conditions.

  • PDF

Skin Permeation Enhancement of Drugs by Lipophilic and Hydrophilic Vehicles

  • Lee, Cheon-Koo;Goto, Shigeru
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.3
    • /
    • pp.43-51
    • /
    • 1995
  • The in vitro skin permeability of 16 drugs with a wide span of lipophilicity (log P ranging from -0,95 to 4.40) was evaluated with an ethanol/panasate 800 (tricaprylin, P-800) (40/60) lipophilic binary vehicle and an ethanol/water (60/40) hydrophilic binary vehicle with lauric acid, The skin permeability of the drugs was enhanced by the use of the ethanol/P-800 (40/60) binary vehicle or the ethanol/water (60/40) binary vehicle with lauric acid; permeation rate was increased and lag time' was decreased. The relationship between lipophilicity and skin permeation rate of the drugs showed parabolic shapes with their peaks at much greater hydrophilic range compared with other past references. In the in vivo skin absorption of theophylline using abdominal rat skin, the ethanol/P-800 (40/60)-7% (w/w) ethycellulose gel produced a good feature as a sustained-release preparation, and the ethanol/water (60/40)-3 % (w/w) HPMC gel with lauric acid showed the highest BA value. The results suggest that the lipophilicity of a drug is a main factor for prediction of the skin permeability of the drug and that the ethanol/P-800 (40/60) binary vehicle and ethanol/water (60/40) binary vehicle with lauric acid would be good candidates for clinical transdermal application of hydrophilic drugs.

  • PDF