• Title/Summary/Keyword: Water model

Search Result 13,750, Processing Time 0.031 seconds

Optimal Design of Dendritic Water Distribution Systems Using Linear Prograning (선형계획법을 이용한 분기형 관망 시스템의 최적설계)

  • 전환돈;김태균
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.135-143
    • /
    • 1994
  • This paper presents a model for the optimal design of dendritic water distribution systems using linear progranning technique. The optimization model was formulated and applied to a coastal region reclamation project site located in Hae-Ham, Jun-Nam province. The water distribution systems in the region had aleady been designed using a hydraulic simulator(BRANCH). The optimization model developed in this research utilized the data given in the report of the project. The comparison between the systems designed by the simulator and by the optimization model shows that the optimization model provides better results and can be utilized more efficiently in the design of dendritic water distribution systems.

  • PDF

A Note on Approximation of Bottled Water Consumption Distribution: A Mixture Model (혼합모형을 이용한 생수소비 분포의 근사화에 대한 소고(小考))

  • Yoo, Seung-Hoon
    • Environmental and Resource Economics Review
    • /
    • v.11 no.2
    • /
    • pp.321-333
    • /
    • 2002
  • Approximating bottled water consumption distribution is complicated by zero observations in the sample. To deal with the zero observations, a mixture model of bottled water consumption distributions is proposed and applied to allow a point mass at zero. The bottled water consumption distribution is specified as a mixture of two distributions, one with a point mass at zero and the other with full support on the positive half of the real line. The model is empirically verified for household bottled water consumption survey data. The mixture model can easily capture the common bimodality feature of the bottled water consumption distribution. In addition, when covariates were added to the model, it was found that the probability that a household has non-consumption significantly varies with some variables.

  • PDF

Operational Water Temperature Forecast for the Nakdong River Basin Using HSPF Watershed Model (HSPF 유역모델을 이용한 낙동강유역 실시간 수온 예측)

  • Shin, Chang Min;Na, Eun Hye;Kim, Duck Gil;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.673-682
    • /
    • 2014
  • A watershed model was constructed using Hydrological Simulation Program Fortran to predict the water temperature at major tributaries of Nakdong River basin, Korea. Water temperature is one of the most fundamental indices used to determine the nature of an aquatic environment. Most processes of an aquatic environment such as saturation level of dissolved oxygen, the decay rate of organic matter, the growth rate of phytoplankton and zooplankton are affected by temperature. The heat flux to major reservoirs and tributaries was analyzed to simulate water temperature accurately using HSPF model. The annual mean heat flux of solar radiation was estimated to $150{\sim}165W/m^2$, longwave radiation to $-48{\sim}-113W/m^2$, evaporative heat loss to $-39{\sim}-115W/m^2$, sensible heat flux to $-13{\sim}-22W/m^2$, precipitation heat flux to $2{\sim}4W/m^2$, bed heat flux to $-24{\sim}22W/m^2$ respectively. The model was calibrated at major reservoir and tributaries for a three-year period (2008 to 2010). The deviation values (Dv) of water temperature ranged from -6.0 to 3.7%, Nash-Sutcliffe efficiency(NSE) of 0.88 to 0.95, root mean square error(RMSE) of $1.7{\sim}2.8^{\circ}C$. The operational water temperature forecasting results presented in this study were in good agreement with measured data and had a similar accuracy with model calibration results.

PREDICTION OF THE REACTOR VESSEL WATER LEVEL USING FUZZY NEURAL NETWORKS IN SEVERE ACCIDENT CIRCUMSTANCES OF NPPS

  • Park, Soon Ho;Kim, Dae Seop;Kim, Jae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.373-380
    • /
    • 2014
  • Safety-related parameters are very important for confirming the status of a nuclear power plant. In particular, the reactor vessel water level has a direct impact on the safety fortress by confirming reactor core cooling. In this study, the reactor vessel water level under the condition of a severe accident, where the water level could not be measured, was predicted using a fuzzy neural network (FNN). The prediction model was developed using training data, and validated using independent test data. The data was generated from simulations of the optimized power reactor 1000 (OPR1000) using MAAP4 code. The informative data for training the FNN model was selected using the subtractive clustering method. The prediction performance of the reactor vessel water level was quite satisfactory, but a few large errors were occasionally observed. To check the effect of instrument errors, the prediction model was verified using data containing artificially added errors. The developed FNN model was sufficiently accurate to be used to predict the reactor vessel water level in severe accident situations where the integrity of the reactor vessel water level sensor is compromised. Furthermore, if the developed FNN model can be optimized using a variety of data, it should be possible to predict the reactor vessel water level precisely.

Evaluation of the Dam Release Effect on Water Quality using Time Series Models (시계열 모형의 적용을 통한 댐 방류의 수질개선 효과 검토)

  • Kim, Sangdan;Yoo, Chulsang
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.685-691
    • /
    • 2004
  • Water quality forecasting with long term flow is important for management and operation of river environment. However, it is difficult to set up and operate a physical model for water quality forecasting due to large uncertainty in the data required for model setting. Therefore, relatively simpler stochastic approaches are adopted for this problem. In this study we try several multivariate time series models such as ARMAX models for the possible substitute for water quality forecasting. Those models are applied to the BOD and COD levels at Noryangin station, Han river, and also evaluated the effect of release from Paldang dam on them. Monthly BOD and COD data from 1985 to 1991 (7 years) are used for model building and another two year data for model testing. As a result of the study, the effect of improvement on water quality is much more effective combining with the water quality improvement of dam release than considering only increment of dam release in the downstream Han river.

Economic Impacts of Agricultural Water Shortages in Korea - A Combined Top-down and Bottom-up Model Analysis - (상·하향 통합모형을 활용한 농업 수자원 부족의 경제적 효과 분석)

  • Lee, Seoung-Ho;Kwon, Oh-Sang;Kang, Sung-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.4
    • /
    • pp.111-126
    • /
    • 2017
  • This study analyzes the impacts of agricultural water shortages in Korea using a combined top-down and bottom-up model. A multi-region multi-output agricultural sector model with detailed descriptions of production technologies and water and land resource constraints has been combined with a standard CGE model. The impacts of four different water shortage scenarios were simulated. It is shown that an active adaptation of crop choices occurs in even the regions with relatively abundant water resources in order to respond to the change in relative output prices caused by water shortages. We found that although the losses in production values are not quite large despite water shortages due to the price feedbacks, the loss in GDP is substantial. We show that our combined approach has advantages in deriving region and product specific production effects as well as the overall GDP loss effect of water shortages.

Numerical Modeling of the Effect of Sand Dam on Groundwater Flow

  • Yifru, Bisrat;Kim, Min-Gyu;Chang, Sun Woo;Lee, Jeongwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.529-540
    • /
    • 2018
  • Sand dam is a flow barrier commonly built on small or medium size sandy rivers to accumulate sand and store excess water for later use or increase the water table. The effectiveness of sand dam in increasing the water table and the amount of extractable groundwater is tested using numerical models. Two models are developed to test the hypothesis. The first model is to simulate the groundwater flow in a pseudo-natural aquifer system with the hydraulically connected river. The second model, a modified version of the first model, is constructed with a sand dam, which raises the riverbed by 2 m. In both models, the effect of groundwater abstraction is tested by varying the pumping rate. As the model results show the groundwater after the construction of the sand dam has increased significantly and the amount of extractable groundwater is also increased by many folds. Most importantly, in the second model, unlike the pseudo-natural aquifer system, the groundwater abstraction does not have a significant effect on the water table.

A Coupled Three-Dimensional Hydrodynamic and Water Quality Modeling of Yongdam Reservoir using ELCOM-CAEDYM (ELCOM-CAEDYM을 이용한 용담호 3차원 수리-수질 연동 모델링)

  • Chung, Se Woong;Lee, Jung Hyun;Ryu, In Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.413-424
    • /
    • 2011
  • The study was aimed to evaluate the applicability of a three-dimensional (3D) hydrodynamic and water quality model, ELCOM-CAEDYM for Yongdam Reservoir, Korea. The model was applied for the simulations of hydrodynamics, thermal stratification processes, stream density flow propagation, and water quality parameters including dissolved oxygen, nutrients, organic materials, and algal biomass (chl-a) for the period of June to December, 2006. The field data observed at four monitoring stations (ST1~ST4) within the reservoir were used to validate the models performance. The model showed reasonable performance nevertheless low frequency boundary forcing data were provided, and well replicated the physical, chemical, and biological processes of the system. Simulated spatial and temporal variations of water temperature, nutrients, and chl-a concentrations were moderately consistent with the field observations. In particular, the model rationally reproduced the succession of different algal species; i.e., diatom dominant during spring and early summer, after then cyanobacteria dominant under warm and stratified conditions. ELCOM-CAEDYM is recommendable as a suitable coupled 3D hydrodynamic and water quality model that can be effectively used for the advanced water quality management of large stratified reservoirs in Korea.

Development of a Genetic Algorithm for the optimization in River Water Quality Management System (하천 수질관리 시스템에서 최적화를 위한 유전알고리즘의 개발)

  • 성기석;조재현
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.203-206
    • /
    • 2001
  • Finding the optimal solution in the river water quality management system is very hard with the non-linearity of the water quality model. Many suggested methods for that using the linear programming, non-linear programming and dynamic programming, are failed to give an optimal solution of sufficient accuracy and satisfaction. We studied a method to find a solution optimizing the river water quality management in the aspect of the efficiency and the cost of the waste water treatment facilities satisfying the water Quality goals. In the suggested method, we use the QUAL2E water quality model and the genetic algorithm. A brief result of the project to optimize the water quality management in the Youngsan river is presented.

  • PDF

The Effect of Flow Induction Machine in Water Circulation System of Cheongna Canal Way (청라지구 물순환체계내 주운수로의 흐름유발시설 설치효과)

  • Kim, Dong-Eon;Choi, Gye-Woon;Park, Young-Sik;Yoon, Geun-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.77-81
    • /
    • 2010
  • This study carried out hydraulic model test for water circulation system in Cheongna district as part of Incheon Free Economic Zone. Canal way project of Cheongna was planned to establish for environment-friendly water circulation system, improve quality of life and diversification of traffic through using boat as a water-friendly international business city. The navigation canal, There are two intake facility in central park and it can purify water 15,000$m^3$ per day. After purify, water move to 8 facility of water culture area which supplies water in canal way. This process called water circulation system in cheongna. Also, there are several flow induction machine in canal way except south-north way. Therefore, this study will verify about validity of water circulation system's safety through hydraulic model test.

  • PDF