• Title/Summary/Keyword: Water mass

Search Result 3,696, Processing Time 0.036 seconds

A Study on Droplet Charging of an High Voltage Spraying System (고전압 분사시스템의 액적 하전 특성연구)

  • Son, Seung-Woo;Yoo, Kyoung-Hoon;Kim, Yoon-Shin
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.893-898
    • /
    • 2003
  • An experiment was conducted to characterize water droplet charging performance of an electrostatic spraying nozzle for an electrostatic wet scrubber. Charge-to-mass ratios, the nozzle currents divided by the mass flow rate of water were obtained with respect to the applied voltage to the ring-electrode for 2 different flow conditions. It was shown that the charge-to-mass ratio increased in proportion to the applied voltage and tended to saturate at a certain higher voltage.

  • PDF

MASS TRANSPORT IN FINITE AMPLITUDE WAVES

  • ;Robert T. Hudspeth
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1988.07a
    • /
    • pp.29-36
    • /
    • 1988
  • A general scheme is developed which determines the Lagrangian motions of water particles by the Eulerian velocity at their mean positions by use of Taylor's theorem. Utilizing the Stokes finite-amplitude wave theory, the mass transport velocity which includes the effects of higher-order wave components is determined. The fifth-order theory predicts the mass transport velocity less than that given by the existing second-order theory over the whole depth. Limited experimental data for changes in wave celerity in closed wave flumes are compared with the theoretical predictions.

  • PDF

A Study on Vibration Characteristics in Water Tank Structures -Change of Aspect Ratio and Pressure Distribution- (접수 탱크 구조물의 진동특성에 관한 연구 - 종횡비 변화와 압력분포 -)

  • 배성용
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.80-87
    • /
    • 2003
  • Tank structures in ships are in contact with various fluid. The vibration characteristics of those structures are strongly affected by the added mass due to containing fluid. It is important to predict vibration characteristics of tank structures, but it is difficult to do. That's because the interaction problem concerned with the free surface, the variation of water depth and stiffener is to be considered between the fluid and the structure. Many authors have studied vibration of rectangular tank structures containing water. Kito studied added mass effect of water in contact with thin elastic flat plates. Kim et al. studied flexural vibration of stiffened plates in contact with water. However, few researches on dynamic interaction tank walls with water are reported in the vibration of rectangular tanks recently. in the present report, the coupling effect of added mass of fluid and structural constraint between panels on each vibration mode changing breadth of elastic plate, and dynamic pressure distribution have investigated numerically and discussed.

Field Measurements and Numerical Analysis on the Efficiency of Water Curtain Boreholes in Underground Oil Storages (지하 유류비축기지 수벽공의 효율에 관한 현장계측 및 수치 해석 연구)

  • 이경주;이희근
    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.79-86
    • /
    • 1998
  • This study was performed to suggest to suggest suitable design conditions of water curtain system through analysis on pressure down in boreholes by hydraulic tests carried out I construction fields for underground oil storages. The influence by hydraulic conductivities of rock mass around boreholes on pressure down in boreholes was analysed. The relationship between array of boreholes and their pressure down was also analysed. Groundwater flow analysis on crude oil and LPG storages was carried out to evaluate results of field tests and to investigate distribution of hydraulic gradient in rock mass around cavern using finite difference method. As the results, hydraulic tests showed that pressure down in boreholes was inverse proportional to the hydraulic conductivity of surrounding rock mass. The rate of pressure down of boreholes was not influenced by water curtain system more than 20m over cavern and was proportional to installation interval of boreholes. The hydraulic gradient in rock mass around cavern was proportional to distance and interval of boreholes and its value was not satisfactory to oil tightness condition in case of no water curtain system.

  • PDF

A Study on the Effect of Cold Water Mass on Observed Air Temperature in Busan (부산지역 기온에 미치는 냉수대의 영향에 대한 연구)

  • Park, Myung-Hee;Lee, Joon-Soo;Ahn, Ji-Suk;Suh, Young-Sang;Han, In-Seong;Kim, Hae-Dong;Bae, Hun-Kyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.132-146
    • /
    • 2014
  • The effects of the cold air generated from large cold water mass at the coastal area on observed air temperature in Busan were investigated using AWS(Automatic Weather Station) data at the Busan area operated by Korea Meterological Administration and SST(Sea Surface Temperature) data at the Gijang and Busan area operated by Korean National Fisheries Research Development Institute. First, the temperature difference between the coastal area and the city area was about $1^{\circ}C$ during cold water mass day while it was about $0.5^{\circ}C$ if cold water mass was not appeared. Second, for day time, the temperature at the coastal area was about $1^{\circ}C$ lower than that at the city area during cold water mass day, but the difference was only about $0.4^{\circ}C$ without cold water mass. On the other hand, for night time, the temperature at the coastal area was about $1.2^{\circ}C$ lower than that at the city area during cold water mass day and the difference was about $0.9^{\circ}C$ without cold water mass. As a result, temperature differences at night time were higher than those at day time whether or not cold water mass appeared. The reason for higher temperature at night time might be the urban heat island phenomenon.

Groundwater inflow rate estimation considering excavation-induced permeability reduction in the vicinity of a tunnel (터널 굴착으로 인한 터널인접 절리암반 투수계수 감소를 고려한 터널 내 지하수 유입량 산정방법)

  • Moon, Joon-Shik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.333-344
    • /
    • 2013
  • This paper discussed about the effect of permeability reduction of the jointed rock mass in the vicinity of a tunnel which is one of the reasons making large difference between the estimated ground-water inflow rate and the measured value. Current practice assumes that the jointed rock mass around a tunnel is a homogeneous, isotropic porous medium with constant permeability. However, in actual condition the permeability of a jointed rock mass varies with the change of effective stress condition around a tunnel, and in turn effective stress condition is affected by the ground water flow in the jointed rock mass around the tunnel. In short time after tunnel excavation, large increase of effective tangential stress around a tunnel due to stress concentration and pore-water pressure drop, and consequently large joint closure followed by significant permeability reduction of jointed rock mass in the vicinity of a tunnel takes place. A significant pore-water pressure drop takes place across this ring zone in the vicinity of a tunnel, and the actual pore-water pressure distribution around a tunnel shows large difference from the value estimated by an analytical solution assuming the jointed rock mass around the tunnel as a homogeneous, isotropic medium. This paper presents the analytical solution estimating pore-water pressure distribution and ground-water inflow rate into a tunnel based on the concept of hydro-mechanically coupled behavior of a jointed rock mass and the solution is verified by numerical analysis.

A Study on Vibration Characteristics in Water Tank Structure (접수탱크구조의 진동특성에 관한 연구)

  • 배성용
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.46-52
    • /
    • 2003
  • In ship structures, many parts are in contact with inner or outer fluid as stern, ballast and oil tanks. Fatigue damages can be sometimes observed in these tanks which seem to be caused by resonance. Tank structures in ships are in contact with water and the vibration characteristics are strongly affected by the added mass of containing water. Therefore it is important to predict vibration characteristics of tank structures. In order to estimate the vibration characteristics, the fluid-structure interaction problem has to be solved precisely. In the present paper, we have developed a numerical tool of vibration analysis of 3-dimensional tank structures using finite elements for plates and boundary elements for water region. To verify the present analysis, we have made an experiment for vibration characteristics of a tank with elastic opposite panels. And the added mass effect of containing water and the effect of structural constraint between panels are investigated numerically and discussed.

Second Law Optimization of Water-to-Water Heat Pump System

  • Kim, Kyu-Hyung;Woo, Joung-Son;Lee, Se-Kyoun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.122-128
    • /
    • 2003
  • This paper presents a thermodynamic analysis of heat pump system using water as a heat source and heat sink. The primary object in this study is the optimization of exergetic efficiency. Two different systems, 2-stream and 1-stream system, are analyzed in detail. Mass flow ratio (the ratio of mass flow rate of water through evaporator to that through condenser) is identified as the most important parameter to be optimized. It is shown that there exists an optimum mass flow ratio to maximize exergetic efficiency. The variation of optimum exergetic efficiency of 2-stream system is quite small and the value lies between 0.2∼0.23 for the range of investigation in this study. However, far better performance can be obtained from 1-stream system. This means considerable irreversibilities are generated through condenser of the 2-stream system. The effects of adiabatic efficiency of compressor-motor unit on the overall system performance are also examined in the analysis.

Estimation of Inlet Air Mass Flow for Air-Fuel Raito Control of Gaseous-Fuel Engines (기체연료 엔진에서 공연비제어를 위한 흡입공기량 추정)

  • 심한섭;이강윤;선우명호;송창섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.131-139
    • /
    • 2001
  • Highly accurate control of the air-fuel ratio is important to reduce exhaust gas emissions of the gaseous-fuel engines. In order to achieve this purpose, inlet air mass flow must be measured exactly, and precise engine models are necessary to design engine control systems. In this paper, the effects of water vapor and gaseous fuel that change the air mass flow are studied. The effective air mass ratio is defined as the air mass flow divided by the mixture mass flow, and also it is applied to the estimation of the inlet air mass flow. The presence of the gaseous fuel and the water vapor in the mixture reduces the air partial pressure and the effective air mass ratio of the gaseous-fuel engines. The Experimental results for an LPG engine show that the estimation of the inlet ai mass flow based upon the effective air mass ratio is more accurate than that of the normal air mass flow.

  • PDF

Variations and Characters of Water Quality during Flood and Dry Seasons in the Eastern Coast of South Sea, Korea (한국 남해 동부 연안 해역에서 홍수기와 갈수기 동안 수질환경 특성과 변동)

  • Jeong, Do Hyeon;Shin, Hyeon Ho;Jung, Seung Won;Lim, Dhong Il
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.1
    • /
    • pp.19-36
    • /
    • 2013
  • Physiochemical characters of sea waters during summer flood- and winter dry-seasons and their spatial variations were investigated along the coastal area off the eastern South Sea, Korea. Using the hierarchical clustering method, in this study, we present comprehensive analyses of coastal waters masses and their seasonal variations. The results revealed that the coastal water of the study area was classified into six water masses (A to F). During summer season, the surface water was mainly occupied by the coastal pseudo-estuarine water (water mass B) with low salinity and high nutrients and the river-dominated coastal water (water mass C) with low nutrients, respectively. The bottom water was dominated by cold water (water mass D) with very low temperature, high salinity and high nutrients, compared to masses of surface water. Notably, the water mass B, with high concentrations of nutrients (silicate and nitrogen) and low salinity, which is strongly controlled by the water quality of river freshwater, seems to play an important role in controlling the water quality and further regulating physical processes on ecosystem in the eastern coastal area of South Sea. The water mass D (bottom cold water) coupled with a strong thermocline, which exists in near-bottom layer along the western margin of Korea Strait, has a low temperature, pH and DO, but abundant nutrients. This water mass disappears in winter owing to strong vertical mixing, and subsequently may act as a pool for nutrients during winter dry-season. On the other hand, vertically well-mixed water column during the winter season was typically occupied by the Tsushima (water mass E) and the coastal water (water mass F) with a development of coastal front formed in a transition zone between them. These winter water masses were characterized by low nutrient concentration and balance in N/P ratio, compared with summer season with high nutrient concentrations and strong N-limitation. Accordingly, the analysis of water masses will help one to better chemical and biological processes in coastal area. In most of the study area, characteristically, the growth of phytoplankton community is limited by nitrogen, which is clearly different with coastal environment of West Sea of Korea, with a relative lack of phosphorus. It showed the western and the southern coasts in Korea are substantially different from each other in environmental and ecological characteristics.