• Title/Summary/Keyword: Water level prediction

Search Result 347, Processing Time 0.03 seconds

Flood Runoff Simulation using Radar Rainfall and Distributed Hydrologic Model in Un-Gauged Basin : Imjin River Basin (레이더 강우와 분포형 수문모형을 이용한 미계측 유역의 홍수 유출모의: 임진강 유역)

  • Kim, Byung-Sik;Bae, Young-Hye;Park, Jung-Sool;Kim, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.52-67
    • /
    • 2008
  • Recently, frequent occurrence of flash floods caused by climactic change has necessitated prompt and quantitative prediction of precipitation. In particular, the usability of rainfall radar that can carry out real-time observation and prediction of precipitation behavior has increased. Moreover, the use of distributed hydrological model that enables grid level analysis has increased for an efficient use of rainfall radar that provides grid data at 1km resolution. The use of distributed hydrologic model necessitates grid-type spatial data about target basins; to enhance reliability of flood runoff simulation, the use of visible and precise data is necessary. In this paper, physically based $Vflo^{TM}$ model and ModClark, a quasi-distributed hydrological model, were used to carry out flood runoff simulation and comparison of simulation results with data from Imjin River Basin, two-third of which is ungauged. The spatial scope of this study was divided into the whole Imjin River basin area, which includes ungauged area, and Imjin River basin area in South Korea for which relatively accurate and visible data are available. Peak flow and lag time outputs from the two simulations of each region were compared to analyze the impact of uncertainty in topographical parameters and soil parameters on flood runoff simulation and to propose effective methods for flood runoff simulation in ungauged regions.

  • PDF

A Study on the determination of the optimal resolution for the application of the distributed rainfall-runoff model to the flood forecasting system - focused on Geumho river basin using GRM (분포형 유역유출모형의 홍수예보시스템 적용을 위한 최적해상도 결정에 관한 연구 - GRM 모형을 활용하여 금호강 유역을 중심으로)

  • Kim, Sooyoung;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.107-113
    • /
    • 2019
  • The flood forecasting model currently used in Korea calculates the runoff of basin using the lumped rainfall-runoff model and estimates the river level using the river and reservoir routing models. The lumped model assumes homogeneous drainage zones in the basin. Therefore, it can not consider various spatial characteristics in the basin. In addition, the rainfall data used in lumped model also has the same limitation because of using the point scale rainfall data. To overcome the limitations as mentioned above, many researchers have studied to apply the distributed rainfall-runoff model to flood forecasting system. In this study, to apply the Grid-based Rainfall-Runoff Model (GRM) to the Korean flood forecasting system, the optimal resolution is determined by analyzing the difference of the results of the runoff according to the various resolutions. If the grid size is to small, the computation time becomes excessive and it is not suitable for applying to the flood forecasting model. Even if the grid size is too large, it does not fit the purpose of analyzing the spatial distribution by applying the distributed model. As a result of this study, the optimal resolution which satisfies the accuracy of the bsin runoff prediction and the calculation speed suitable for the flood forecasting was proposed. The accuracy of the runoff prediction was analyzed by comparing the Nash-Sutcliffe model efficiency coefficient (NSE). The optimal resolution estimated from this study will be used as basic data for applying the distributed rainfall-runoff model to the flood forecasting system.

Study on the Improvement Method of Flood Risk Assessment by Flood Damage Area (홍수피해예상지역을 고려한 홍수위험도 산정기법 개선방안 연구)

  • Hong, Seungjin;Joo, Hongjun;Kim, Kyungtak
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.459-469
    • /
    • 2017
  • The aim of this study is to improve Potential Flood Damage(PFD) that a flood risk assessment technique used in the National Water Resource Plan comprehensive plan for water resources, which is a top-level plan related to domestic water resources and Flood Risk Indices. Both methods are used to evaluate flood control risks. However, there is a problem of reliability because the problem of data utilization and the damage that occurred in a specific area are applied as an average concept. Therefore, this study improved the method for analysis by components and the flood inundation area was limited to flood damage area. Also, the improvement of the method and the application of the recently provided GIS data to the flood damage prediction area were proposed to improve the usability of the existing method. The existing analysis method and the improved method were applied to the test watershed by each case.

Parameter Sensitivity Analysis of SWAT Model for Prediction of Pollutants Fate in Joman River Basin (조만강 유역의 오염물질 거동 예측을 위한 SWAT 모형의 매개변수 민감도 분석)

  • Kang, Deok-Ho;Kim, Tae-Won;Kim, Young-Do;Kwon, Jae-Hyun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.787-790
    • /
    • 2008
  • The SWAT(Soil and Water Assesment Tool) is a relatively large scale model for the complicated watershed or river basin. The model was developed to predict the effect of land management practices on water, sediment and agricultural chemical yields in large complex watershed with varying soils, land use and management conditions over long periods of time. Usually streams are divided into urban stream and natural stream in accordance with the development level. In case of urban stream, according to urbanization, as impermeable areas are increasing due to the change of land use condition and land cover condition, dry stream phenomenon at urban stream is rapidly progressed. In this study, long term run-off simulations in urban stream are performed by using SWAT model. Especially, the model is applied in small scale water shed, Joman River basin. The optimization by the sensitivity analysis is also performed for the model parameter estimations.

  • PDF

Prediction of Climate Change Impacts on Streamflow of Daecheong Lake Area in South Korea

  • Kim, Yoonji;Yu, Jieun;Jeon, Seongwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.169-169
    • /
    • 2020
  • According to the IPCC analysis, severe climate changes are projected to occur in Korea as the temperature is expected to rise by 3.2 ℃, the precipitation by 15.6% and the sea level by 27cm by 2050. It is predicted that the occurrence of abnormal climate phenomena - especially those such as increase of concentrated precipitation and extreme heat in the summer season and severe drought in the winter season - that have happened in Korea in the past 30 years (1981-2010) will continuously be intensified and accelerated. As a result, the impact on and vulnerability of the water management sector is expected to be exacerbated. This research aims to predict the climate change impacts on streamflow of Daecheong Lake area of Geum River in South Korea during the summer and winter seasons, which show extreme meteorological events, and ultimately develop an integrated policy model in response. We projected and compared the streamflow changes of Daecheong Lake area of Geum River in South Korea in the near future period (2020-2040) and the far future period (2041-2060) with the reference period (1991-2010) using the HEC-HMS model. The data from a global climate model HadGEM2-AO, which is the fully-coupled atmosphere-ocean version of the Hadley Centre Global Environment Model 2, and RCP scenarios (RCP4.5 and RCP8.5) were used as inputs for the HEC-HMS model to identify the river basins where cases of extreme flooding or drought are likely to occur in the near and far future. The projections were made for the summer season (July-September) and the winter season(November-January) in order to reflect the summer monsoon and the dry winter. The results are anticipated to be used by policy makers for preparation of adaptation plans to secure water resources in the nation.

  • PDF

Prediction of Potential Shoreline Retreat by Sea Level Rise (해수면 상승에 의한 해안선의 잠재적 후퇴거리 산정)

  • 손창배
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.34-40
    • /
    • 1999
  • Models of beach response due to sea level rise were verified by experiments and potential shoreline retreat around Korea and Japan was predicted. Wave tank experiments demonstrated that not only static retreat by water level rise but also additional retreat by wave action plays an important role in total retreat and additional retreat becomes important on the condition of high waves. The result of long-term analysis of tidal data over past 3 decades shows the tendency toward rise by an average of 1.79 mm/year, which is the result of rise in 29 regions and fall in 12 regions. Based on analyzed rate of long-term sea-level rise, potential shoreline retreats of study area after 50 years were calculated and the result shows serious loss of beach.

  • PDF

Calculation of Water Level Variations and Extreme Waves in Busan Harbor due to Storm Surges (고조로 인한 부산항 해수면 변화 및 극한파랑의 산정)

  • Whang Ho-Dong;Lee Joong-Woo;Kwon So-Hyun;Yang Sang-Yong;Gum Dong-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.227-234
    • /
    • 2004
  • Recently huge typhoons had attacked to the coastal waters in Korea and caused disastrous casualties in those area. There are some discussions on correction to the design parameters for the coastal structures. Wave transformation computations with the extreme waves are of value in planning and constructing engineering works, especially in coastal regions. Prediction of typhoon surge elevations is based primarily on the use of a numerical model in this study, since it is difficult to study these events in real time or with use of physical models. Wave prediction with a two dimensional numerical model for a site with complicated coastal lines and structures at the period of typhoon 'Maemi' is discussed. In order to input parameters for the extreme wave conditions, we analyzed the observed and predicted typhoon data. Finally we applied the model discussed above to the storm surge and extreme wave problem at Busan Harbor, the southeast coast of Korea. Effects of water level variation and transformation of the extreme waves in relation with the flooding in coastal waters interested are analyzed. We then mack an attempt to presen a basic hazard map for the corresponding site.

  • PDF

Characteristics of Autogenous Shrinkage for Concrete Containing Blast-Furnace Slag (고로슬래그를 함유한 콘크리트의 자기수축 특성)

  • Lee Kwang-Myong;Kwon Ki-Heon;Lee Hoi-Keun;Lee Seung-Hoon;Kim Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.621-626
    • /
    • 2004
  • The use of blast-furnace slag (BFS) in making not only normal concrete but also high-performance concrete has several advantages with respect to workability, long-term strength and durability. However, slag concrete tends to show more shrinkage than normal concrete, especially autogenous shrinkage. High autogenous shrinkage would result in severe cracking if they are not controlled properly. Therefore, in order to minimize the shrinkage stress and to ensure the service life of concrete structures, the autogenous shrinkage behavior of concrete containing BFS should be understood. In this study, small prisms made of concrete with water-binder (cement+BFS) ratio (W/B) ranging from 0.27 to 0.42 and BFS replacement level of $0\%$, $30\%$, and $50\%$, were prepared to measure the autogenous shrinkage. Based on the test results, thereafter, material constants in autogenous shrinkage prediction model were determined. In particular, an effective autogenous shrinkage defined as the shrinkage that contributes to the stress development was introduced. Moreover, an estimation formula of the 28-day effective autogenous shrinkage was proposed by considering various W/B's. Test results showed that autogenous shrinkage increased with replacement level of BFS at the same W/B. Interestingly, the increase of autogenous shrinkage is dependent on the W/B at the same content of BFS; the lower W/B, the smaller increasing rate. In concluding, it is necessary to use the combination of other mineral admixtures such as shrinkage reducing admixture or to perform sufficient moisture curing on the construction site in order to reduce the autogenous shrinkage of BFS concrete.

Nonlinear Autoregressive Modeling of Southern Oscillation Index (비선형 자기회귀모형을 이용한 남방진동지수 시계열 분석)

  • Kwon, Hyun-Han;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.12 s.173
    • /
    • pp.997-1012
    • /
    • 2006
  • We have presented a nonparametric stochastic approach for the SOI(Southern Oscillation Index) series that used nonlinear methodology called Nonlinear AutoRegressive(NAR) based on conditional kernel density function and CAFPE(Corrected Asymptotic Final Prediction Error) lag selection. The fitted linear AR model represents heteroscedasticity, and besides, a BDS(Brock - Dechert - Sheinkman) statistics is rejected. Hence, we applied NAR model to the SOI series. We can identify the lags 1, 2 and 4 are appropriate one, and estimated conditional mean function. There is no autocorrelation of residuals in the Portmanteau Test. However, the null hypothesis of normality and no heteroscedasticity is rejected in the Jarque-Bera Test and ARCH-LM Test, respectively. Moreover, the lag selection for conditional standard deviation function with CAFPE provides lags 3, 8 and 9. As the results of conditional standard deviation analysis, all I.I.D assumptions of the residuals are accepted. Particularly, the BDS statistics is accepted at the 95% and 99% significance level. Finally, we split the SOI set into a sample for estimating themodel and a sample for out-of-sample prediction, that is, we conduct the one-step ahead forecasts for the last 97 values (15%). The NAR model shows a MSEP of 0.5464 that is 7% lower than those of the linear model. Hence, the relevance of the NAR model may be proved in these results, and the nonparametric NAR model is encouraging rather than a linear one to reflect the nonlinearity of SOI series.

Long Tenn Water Quality Prediction using an Eco-hydrodynamic Model in the Asan Bay (생태-유체역학모델을 이용한 아산만 해양수질의 장기 예측)

  • Kwoun, Chul-Hui;Kang, Hoon;Cho, Kwang-Woo;Maeng, Jun-Ho;Jang, Kyu-Sang;Lee, Seung-Yong;Seo, Jeong-Bin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.2
    • /
    • pp.91-98
    • /
    • 2009
  • The long-term water-quality change of Asan Bay by the influx of polluted disposal water was predicted through a simulation with an Eco-hydrodynamic model. Eco-hydrodynamic model is composed of a multi-level hydrodynamic model to simulate the water flow and an ecosystem model to simulate water quality. The water quality simulation revealed that the COD(Chemical Oxygen Demand), dissolved inorganic nitrogen(DIN) and dissolved inorganic phosphorus(DIP) are increased at 5 stations for the subsequent 6 months after the influx of the effluent. COD, DIN and DIP showed gradual decreases in concentration during the period of one to two years after the increase of last 6 months and reached steady state for next three to ten years. Concentration levels of COD, DIN, and DIP showed the increase by the ranges of $11{\sim}67%$, $10{\sim}67%$, and $0.5{\sim}7%$, respectively, which represents that the COD and DIN are the most prevalent pollutants among substances in the effluent through the sewage treatment plant. The current water quality of Asan Bay based on the observed COD, TN and TP concentrations ranks into the class II of the Korean standards for marine water quality but the water quality would deteriorate into class III in case that the disposal water by the sewage plant is discharged into the Bay.

  • PDF