• Title/Summary/Keyword: Water infrastructure

Search Result 969, Processing Time 0.024 seconds

Properties of pervious concrete containing high-calcium fly ash

  • Sata, V.;Ngohpok, C.;Chindaprasirt, P.
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.337-351
    • /
    • 2016
  • This paper presents the properties of pervious concrete containing high-calcium fly ash. The water to binder ratios of 0.19, 0.22, and 0.25, designed void ratios of 15, 20, and 25%, and fly ash replacements of 10, 20, and 30% were used. The results showed that the use of fly ash as partial replacement of Portland cement enhanced the mixing of paste resulting in a uniform mix and reduced amount of superplasticizer used in the mixture. The compressive strength and flexural strength of pervious concrete were slightly reduced with an increase in fly ash replacement level, while the abrasion resistance increased due mainly to the pozzolanic and filler effects. The compressive strength and flexural strengths at 28 days were still higher than 85% of the control concrete. The aggregate size also had a significant effect on the strength of pervious concrete. The compressive strength and flexural strength of pervious concrete with large aggregate were higher than that with small aggregate.

Analysis on Appropriate Plants of Infiltration Swale for Road Runoff (도로변 LID 시설인 침투도랑에 적합한 식물 선정에 관한 연구)

  • Lee, Eun Yeob;Hyun, Kyoung hak;Jung, Jong Suk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.5
    • /
    • pp.19-27
    • /
    • 2016
  • This study is to find appropriate plant for infiltration swale (which is natural LID infrastructure) and suggest basic research database for building infrastructure of LID facilities. Through the research inside, it first selects the plant strong to flooding and salt tolerance. Also, the research built infiltration swale along the road, planted those strong plants and monitored how well those plants adapted into the environment. Particularly, it showered 72mm/hr-speed artificial shower, also with natural shower, given that plants were vulnerable to flood because of influx of the rain. As a result of field applicability monitoring, Pennisetum alopecuroides and Equisetum hyemale (which degrade the pollutant well and adapt into rainy environment) are planting individually, or Juncus effusus var. decipiens, Liriope platyphylla, Miscanthus sinensis Andersson, Euonymus japonica (which are strong to rainy environment) and Pennisetum alopecuroides and Equisetum hyemale are mixed planting. The research should have monitored the plant for more than one year to study them, but the research only lasted five months. Therefore, it is hard to generalize. After all, through the long term research, it should pursue study more on appropriate plant materials and database that can be the reference for infrastructure establishment and maintenance.

Economic Feasibility of Common Utility Tunnel based on Cost-Benefit Analysis (비용편익 분석에 기초한 공동구의 경제적 타당성 평가)

  • Kang, Yeong Ku;Choi, Ik Chang
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.29-36
    • /
    • 2015
  • Common utility tunnel is essential to the daily lives of people underground utilities (electricity, gas and supply facilities such as water, communication facilities, sewer facilities, etc.) to improve the appearance by co-acceptance and disaster prevention, important for the conservation of the city's population was concentrated road construction the city-based facilities. There is recognition of the importance of the various supply treatment facilities in common utility tunnel as infrastructure to accommodate joint according to the city expanded, the demand for infrastructure. In this paper, a cost-benefit analysis using a one-time occurrence, without simply relying on cost or current cost, project manager for the city-dimensional feasibility study conducted, the user level of the maintenance costs and user costs, including social costs items from various angles can be investigated and proposed a mechanism of economic feasibility common utility tunnel. Evaluation of the proposed technique is cost-benefit and cost caused by installing common utility tunnel the existing pipeline area - was investigated by the benefit analysis, extended and repeated common utility tunnel installation depends much affected by the excavation, so users of reducing the number of repeat excavation convenience can be seen that this occurs.

A Study on the Security Management for Critical Key Infrastructure(SCADA) (중요핵심기반시설(SCADA)에 대한 보안 관리 연구)

  • Kim InJung;Chung YoonJung;Koh JaeYoung;Won Dongho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8C
    • /
    • pp.838-848
    • /
    • 2005
  • Most of the national critical key infrastructure, such as power, piped gas and water supply facilities, or the high-speed railroad, is run on the SCADA system. Recently, concerns have been raised about the possibility of these facilities being attacked by cyber terrorists, hacking, or viruses. Thus, it is time to adopt the relevant security management techniques. This paper attempts to propose such security management techniques, including information protection measures and troubleshooting, based on a risk analysis process concerning assets, threats/vulnerability, and hazards, and to examine the security management status of critical key infrastructure in the U.S. and Japan.

Improvement in shear strength characteristics of desert sand using shredded plastic waste

  • Kazmi, Zaheer Abbas
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.497-503
    • /
    • 2020
  • In the Kingdom of Saudi Arabia, the shallower depth of the earth's crust is composed of loose dune or beach sand with soluble salts. The expansive behavior of salt bearing soil, fluctuation of ground water table and extreme environmental conditions offer a variety of geotechnical problems affecting safety and serviceability of the infrastructure built on it. Despite spending money, time and other resources on repair and rehabilitation, no significant attention is paid to explore the root causes of excessive differential settlement and cracking to these facilities. The scientific solution required to ensure safety and serviceability of the constructed infrastructure is to improve the strength and durability properties of the supporting ground. In this study, shredded plastic is employed as a low cost and locally available additive to improve strength characteristics of the desert sand. The study shows a remarkable increase in the shear strength and normal settlement of the soil. A seven (07) degree increase in angle of internal friction is achieved by adding 0.4 percent of the shredded plastic additive. The effect of different proportions and sizes of the plastic strips is also investigated to obtain optimum values. Such a long-lived solution will seek to reduce maintenance and repair costs of the infrastructure facilities laid on problematic soil along with reduction of environmental pollutants.

Constructing Landscape as an Operational Multi-Environmental Control Utility and Green Infrastructure - Landscape Design for National Marine Biology Resource Institute - (작동하는 복합환경조절장치 및 녹색기반시설로서 조경 - 국립해양생물자원관 옥외공간 설계 -)

  • Sung, Jongsang
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.41-56
    • /
    • 2012
  • Landscape space can and should play as a multi-functional agent : healing contaminated soil, reducing natural hazards, supporting living things, making comfortable environment for human, and appealing to human aesthetics, etc. This article aims to show the possibility and role of landscape space as such agent. In landscape design for National Marine Biology Resource Institute, distributed rain water treatment system and rain gardens are introduced to replace a mono-functioning large detention pond which was suggested by disaster impact assesment. Phytoremediation and vegetation filtering system with muti-cell wetlands are also adapted to heal the contaminated soil. This kind of landscape as a 'living machine' which can play as an operational control utility of multi-environment and thus can be combined effectively into green infrastructure is important for post-industrial city, especially in an era of climate change.

The Cost Analysis of Network by The Function of Automatic Link Recovery (자동링크복구 기능에 따른 네트워크 비용분석)

  • Song, Myeong-Kyu
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.439-444
    • /
    • 2015
  • The Social infrastructure systems such as communication, transportation, power and water supply systems are now facing various types of threats including component failures, security attacks and natural disasters, etc. Whenever such undesirable events occur, it is crucial to recover the system as quickly as possible because the downtime of social infrastructure causes catastrophic consequences in the society. Especially when there is a network link-failure, we need an automatic link-recovery method. This means that customers are aware of network failures that can be recovered before you say that service. In this paper, we analysis the relation between Auto-recovery performance and cost.

Seismic performance of the immersed tunnel under offshore and onshore ground motions

  • Bowei Wang;Guquan Song;Rui Zhang;Baokui Chen
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.41-55
    • /
    • 2024
  • There are obvious differences between the characteristics of offshore ground motion and onshore ground motion in current studies, and factors such as water layer and site conditions have great influence on the characteristics of offshore ground motion. In addition, unlike seismic response analysis of offshore superstructures such as sea-crossing bridges, tunnels are affected by offshore soil constraints, so it is necessary to consider the dynamic interaction between structure and offshore soil layer. Therefore, a seismic response analysis model considering the seawater, soil layer and tunnel structure coupling is established. Firstly, the measured offshore and different soil layers onshore ground records are input respectively, and the difference of seismic response under different types of ground motions is analyzed. Then, the models of different site conditions were input into the measured onshore bedrock strong ground motion records to study the influence of seawater layer and silt soft soil layer on the seabed and tunnel structure. The results show that the overall seismic response between the seabed and the tunnel structure is more significant when the offshore ground motion is input. The seawater layer can suppression the vertical seismic response of seabed and tunnel structure, while the slit soft soil layer can amplify the horizontal seismic response. The results will help to promote seismic wave selection of marine structures and provide reference for improving the accuracy of seismic design of immersed tunnels.

Long-Term Monitoring of Noxious Bacteria for Construction of Assurance Management System of Water Resources in Natural Status of the Republic of Korea

  • Bahk, Young Yil;Kim, Hyun Sook;Rhee, Ok-Jae;You, Kyung-A;Bae, Kyung Seon;Lee, Woojoo;Kim, Tong-Soo;Lee, Sang-Seob
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1516-1524
    • /
    • 2020
  • Climate change is expected to affect not only availability and quality of water, the valuable resource of human life on Earth, but also ultimately public health issue. A six-year monitoring (total 20 times) of Escherichia coli O157, Salmonella enterica, Legionella pneumophila, Shigella sonnei, Campylobacter jejuni, and Vibrio cholerae was conducted at five raw water sampling sites including two lakes, Hyundo region (Geum River) and two locations near Water Intake Plants of Han River (Guui region) and Nakdong River (Moolgeum region). A total 100 samples of 40 L water were tested. Most of the targeted bacteria were found in 77% of the samples and at least one of the target bacteria was detected (65%). Among all the detected bacteria, E. coli O157 were the most prevalent with a detection frequency of 22%, while S. sonnei was the least prevalent with a detection frequency of 2%. Nearly all the bacteria (except for S. sonnei) were present in samples from Lake Soyang, Lake Juam, and the Moolgeum region in Nakdong River, while C. jejuni was detected in those from the Guui region in Han River. During the six-year sampling period, individual targeted noxious bacteria in water samples exhibited seasonal patterns in their occurrence that were different from the indicator bacteria levels in the water samples. The fact that they were detected in the five Korea's representative water environments make it necessary to establish the chemical and biological analysis for noxious bacteria and sophisticated management systems in response to climate change.

Study on the characteristics of night flow components for leakage management in district metered area (배수구역별 누수관리를 위한 야간유량성분 특성연구)

  • Koo, Ja-Yong;Jang, Kwang-Ho;Kim, Min-Cheol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.871-879
    • /
    • 2009
  • The Korea has high population density, so the precipitation per capita is only one tenth to world average. The water resource in Korea is insufficient. But the leakage in the water distribution system is about 25%, and it is lower than other countries where water utilities are managed well. The pipelines' management also is getting worse because the leakage in the pipelines lower the ground density surrounding pipes. So, managing the leakage in the water distribution system is very important in the view of increasing the water resources and doing the efficient management of the pipeline system. Accordingly this study aimed to conduct a cause-analysis with scientific approaches considering key local factor related to water loss of distribution system and derive better performance indicators which are able to evaluate the real state of water loss management reasonably. Also this research aimed to develop a methodology capable of judging condition of infrastructure of water distribution system.