• Title/Summary/Keyword: Water hold-up

Search Result 30, Processing Time 0.028 seconds

A Study on LSTM-based water level prediction model and suitability evaluation (LSTM 기반 배수지 수위 변화 예측모델과 적합성 평가 연구)

  • Lee, Eunji;Park, Hyungwook;Kim, Eunju
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.56-62
    • /
    • 2022
  • Water reservoir is defined as a storage space to hold and supply filtered water and it's significantly important to manage water level in the water reservoir so as to stabilize water supply by controlling water supply depending on demand. Liquid level sensors have been installed in the water reservoir and the pumps in the booster station facilitated management for optimum water level in the water reservoir. But the incident responses including sensor malfunction and communication breakdown actually count on manager's inspection, which involves risk of accidents. To stabilize draining facility management, this study has come up with AI model that predicts changes in the water level in the water reservoir. Going through simulation in the case of missing data in the water level to verify stability in relation to the field application of the prediction model for water level changes in the reservoir, the comparison of actual change value and predicted value allows to test utility of the model.

Pond System for Further Polishing of Constructed Wetland Effluent during Winter Season (연못을 이용한 동절기 인공습지 오수처리수의 추가 처리)

  • Yoon, Chun-Gyeong;Jeon, Ji-Hong;Kim, Min-Hee;Ham, Jong-Hwa
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.139-148
    • /
    • 2002
  • Pilot study was performed to examine the feasibility of the pond system for further polishing of treatment wetland effluent from December 2000 to June 2001. The wetland system used for the experiment was highly effective to treat the sewage during the growing season, but it was less effective and its effluent was still high to discharge to the receiving water body. Therefore, the wetland effluent may need further treatment to prevent water quality degradation. Pond system could be used to hold and further polish the wetland effluent during the winter season and ots feasibility was evaluated in this study. Additional water quality improvement was apparent in the pond system during winter season, and the pond effluent could be good enough to meet the effluent water quality standards if it is properly managed. Timing of the pond effluent discharge appears to be critical for pond system management because it is a closed system and whole water quality constituents are affected by physical, chemical, and biological pond environments. Once algae started to grow in mid-April, constituents in the pond water column interact each other actively and its control becomes more complicated. Therefore, upper layer of the pond water column which is clearer than the lower layer my need be discharged in March right after ice cover melted. In the experiment, water quality of the upper water column was markedly clear in March than ant other times probably because of freezing-thawing effect. The remaining lower water column could be further treated by natural purification as temperature goes up or diluted with better quality of wetland effluent for appropriate water uses. This study demonstrated the feasibility of pond system for subsequent management of wetland effluent during the winter season, however, more study is needed for field application.

The Flow Characteristic Variation by Installing a Movable Weir having Water Drainage Equipment on the Bottom (저층수 배출식 가동보 설치에 따른 흐름특성)

  • Choi, Gye-Woon;Byeon, Seong-Joon;Kim, Young-Kyu;Cho, Sang-Uk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.117-122
    • /
    • 2008
  • Generally, water is taken through channels and rivers, in which there are many weirs and structures, which cross rivers and temporally hold up water. But this way has its own shortcomings. It is main reason that the water flows through structures, and backwater come into being. So it causes many water quality problems and some flood side-effects and so on. In this study, among the various movable weirs, we installed bottom-discharged and air pressure movable weir in the experimental channel. And we analyzed flowing influence, which is followed by the angle variation of movable weir. We also make further study the flow characteristic variation followed by installing entrance at the bottom to discharge the bottom water. The analysis result was that installed weir angle was increased, and the discharge also gradually increased. The installed weir angle depended on the water quantity, which can be excluded in the bottom. In case of velocity, there was increased as maximum 21.9 times, according to there is entrance or not at the bottom. And in case of water level, it showed the water level of locally above the average decrease in the upper river of weir.

A PARTICLE TRACKING MODEL TO PREDICT THE DEBRIS TRANSPORT ON THE CONTAINMENT FLOOR

  • Bang, Young-Seok;Lee, Gil-Soo;Huh, Byung-Gil;Oh, Deog-Yeon;Woo, Sweng-Woong
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.211-218
    • /
    • 2010
  • An analysis model on debris transport in the containment floor of pressurized water reactors is developed in which the flow field is calculated by Eulerian conservation equations of mass and momentum and the debris particles are traced by Lagrange equations of motion using the pre-determined flow field data. For the flow field calculation, two-dimensional Shallow Water Equations derived from Navier Stokes equations are solved using the Finite Volume Method, and the Harten-Lax-van Leer scheme is used for accuracy to capture the dry-to-wet interface. For the debris tracing, a simplified two-dimensional Lagrangian particle tracking model including drag force is developed. Advanced schemes to find the positions of particles over the containment floor and to determine the position of particles reflected from the solid wall are implemented. The present model is applied to calculate the transport fraction to the Hold-up Volume Tank in Advanced Power Reactors 1400. By the present model, the debris transport fraction is predicted, and the effect of particle density and particle size on transport is investigated.

Adsorption Mechanism of Radioactive Cesium by Prussian Blue (프러시안 블루(PB)의 방사성 세슘 흡착 메커니즘 연구)

  • Jang, Sung-Chan;Kim, Jun-Yeong;Huh, Yun Suk;Roh, Changhyun
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.127-130
    • /
    • 2015
  • Since the accident at the Fukushima Daiichi power plant, Prussian blue (PB) has attracted increasing attention as a material for use in decontaminating the environment. We have focused the fundamental mechanism of specific $Cs^+$ adsorption into PB in order to develop high-performance PB-based $Cs^+$ adsorbents. The ability of PB to adsorb Cs varies considerably according to its origin such as what synthesis method was used, and under what conditions the PB was prepared. It has been commonly accepted that the exclusive abilities of PB to adsorb hydrated $Cs^+$ ions are caused by regular lattice spaces surrounded by cyanido-bridged metals. $Cs^+$ ions are trapped by simple physical adsorption in the regular lattice spaces of PB. $Cs^+$ ions are exclusively trapped by chemical adsorption via the hydrophilic lattice defect sites with proton-exchange from the coordination water. Prussian blue are believed to hold great promise for the clean-up of $^{137}Cs$ contaminated water around nuclear facilities and/or after nuclear accidents.

A Study on the Hydraulic Characteristics of Rashig Super-Ring Random Packing in a Counter-Current Packed Tower (역류식 충전탑에서 Raschig Super-ring Random Packing의 수력학적 특성에 대한 연구)

  • Kang, Sung Jin;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.102-108
    • /
    • 2020
  • In recent years, packed column has been widely used in separation processes, such as absorption, desorption, distillation, and extraction, in the petrochemical, fine chemistry, and environmental industries. Packed column is used as a contacting facility for gas-liquid and liquid-liquid systems filled with random packed materials in the column. Packed column has various advantages such as low pressure drop, economical efficiency, thermally sensitive liquids, easy repairing restoration, and noxious gas treatment. The performance of a packed column is highly dependent on the maintenance of good gas and liquid distribution throughout a packed bed; thus, this is an important consideration in a design of packed column. In this study, hydraulic pressure drop, hold-up as a function of liquid load, and mass transfer in the air, air/water, and air-NH3/water systems were studied to find the geometrical characteristic for raschig super-ring experiment dry pressure drop. Based on the results, design factors and operating conditions to handle noxious gases were obtained. The dry pressure drop of the random packing raschig super-ring was linearly increased as a function of gas capacity factor with various liquid loads in the Air/Water system. This result is lower than that of 35 mm Pall-ring, which is most commonly used in the industrial field. Also, it can be found that the hydraulic pressure drop of raschig super-ring is consistently increased by gas capacity factor with various liquid loads. When gas capacity factor with various liquid loads is increased from 1.855 to 2.323 kg-1/2 m-1/2 S-1, hydraulic pressure drop increases around 17%. Finally, the liquid hold-up related to packing volume, which is a parameter of specific liquid load depending on gas capacity factor, shows consistent increase by around 3.84 kg-1/2 m-1/2 S-1 of the gas capacity factor. However, liquid hold-up significantly increases above it.

A study of flow oscillations in a upright heated pipe (직립전열관에서의 유체진동에 관한 연구)

  • 박진길;진강규;오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.85-99
    • /
    • 1984
  • The stability of the two-phase flow in a heated channel is of great importance in the design and operation of the boilers and light water nuclear reactors, because it can cause flow oscillations and lead to a violation of thermal limits with resultant overheating of the channels and cladding. This paper presents a systematic evaluation to the variation effects of the basic four (4) dimensionless parameters in a homogeneous equilibrium model. The flow stability is examined on the ground of static characteristic curves. The complicated transfer function of flow dynamics which gives consideration to the transport lag of density wave is derived, and the transient flow stability is analysed by applying the Nyquist stability criterion in control engineering. The analysis results summed up as follows 1. The coolant flow becomes stable in large friction number and specific flow, while it is unstabale in small friction number and flow. 2. Large phase-change number and Froude number destabilize the two-phase flow, but small numbers stabilize it. The effect to variation of phase-change number is more dominant compared with Froude number. 3. The dynamic analysis is required to hold the sufficient safety of heated channels since only static results does not keep it. The special attention could be payed in the design and operation of heat engines, because the unstaable region exists within the stable boundary at small and middle phase-change number and Froude number.

  • PDF

A pilot-scale study on a down-flow hanging sponge reactor for septic tank sludge treatment

  • Machdar, Izarul;Muhammad, Syaifullah;Onodera, Takashi;Syutsubo, Kazuaki
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.195-204
    • /
    • 2018
  • A pilot scale study was conducted on a down-flow hanging sponge (DHS) reactor installed at a sewage treatment plant in Banda Aceh, Indonesia for treatment of desludging septic tank wastewater. Raw wastewater with an average biochemical oxygen demand (BOD) and total suspended solids of 139 mg/L and 191 mg/L, respectively, was pumped into the reactor. Two different hydraulic retention times (HRTs, 3 h and 4 h) were investigated, equivalent to organic loadings of 1.11 and $0.78kg\;BOD/m^3/d$, respectively. The average BOD concentration in the final effluent was 46 and 26 mg/L at HRTs of 3 and 4 h, respectively. The concentration of retained sludge along the reactor height was 10.2-18.7 g VSS/L-sponge, and the sludge activities were 0.24-0.32 and 0.04-0.40 mg/g VSS/h for heterotrophs and nitrification, respectively. Values of water hold-up volume, dispersion coefficient, and number of tank in-series found from tracer studies of clean sponge and biomass-loaded sponge confirmed that growth of retained sludge on the sponge module improved hydraulic performance of the reactor. Adoption of the DHS reactor by this Indonesian sewage treatment plant would enhance the role of the current desludging septic tank wastewater treatment system.

Residence Time Distributions of Liquid pbase Flow and Mass Transfers in the Trickle Bed Reactor (점적상 반응기에서 액상흐름의 체류시간 분포 및 물질전달)

  • Kim, Ki-Chang
    • Journal of Industrial Technology
    • /
    • v.6
    • /
    • pp.19-31
    • /
    • 1986
  • The residence time distribution of liquid flow in a 4.0cm diameter column packed with porous $Al_2O_3$ spheres of 0.37cm diameter were measured with pulse injections of a tracer under cocurrent trickling flow conditions. The mean residence time of liquid flow and liquid hold-up calculated by the transient curve of tracer were unaffected by gas flow rates under experimental ranges of liquid flow rates from 2.4 to $4.5(kg/m^2\;sec)$ and gas flow rates from 0 to $0.13(kg/m^2\;sec)$. The axial dispersion coefficient of liquid stream and apparent diffusivity of tracer in a micropore of solid particle were estimated from the response curve of tracer. The calculated Peclet No. were increased in ranges of 68-to 82 with a increasing of liquid mass velocity, and the external effective contacting efficiency between liquid and solid which can be expressed. by $(D_i)_{app}/D_i$ varied in ranges of 0.54 to 0.68 depending on the liquid flow rates. The gas to liquid(water) volumetric mass transfer coefficient were determined from desorption experiments with oxygen at $25^{\circ}C$ and 1 atm. The measured mass transfer coefficients were increased with liquid flow rates and the effect of gas flow rates on the mass transfer coefficient was insignificant.

  • PDF

Electrochemical Behavior of Poly 8-(3-Acetylimino-6-methyl 2,4-dioxopyran)-1-aminonaphthaline in Aqueous and Non Aqueous Media

  • Hathoot, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1609-1612
    • /
    • 2003
  • The electrooxidation of 8-(3-acetylimino-6-methyl 2,4-dioxopyran)-1-aminonaphthaline (AMDAN) in aqueous and non aqueous media led to the formation of polymeric films, poly (AMDAN). The monomer, undergo anodic oxidation through the formation of a monocation radical irrespective of the nature of the medium. In aqueous medium, the monocation radical undergoes, through its resonance structures, dimerisation involving tail-to-tail, head-to-tail and even head-to-head coupling. The products formed, being more easily oxidisable than the parent substance, undergo further oxidation at the same potential so that the overall oxidation involves a one-step (i.e., a single wave), two-electron process. In non-aqueous medium, the monocation radical does not undergo dimerisation through coupling reactions. Retaining its identity, monomer oxidise in two steps involving one electron in each step. The fact that the cathodic peaks corresponding to these anodic peaks are rarely observed indicates fast consumption of the electrogenerated monocation radicals and dications by follow-up chemical reactions to produce polymeric products (poly AMDAN). The electrochemical behavior of the formed polymer films was investigated in both non aqueous and aqueous media. The films prepared in non aqueous medium were found to be more electroactive than that the films prepared in aqueous medium. This is confirmed with the results in litreature which illustrate that the film prepared in aqueous solution hold water in its structure via hydrogen bonding, which causes decomposition reactions.