• Title/Summary/Keyword: Water front

Search Result 739, Processing Time 0.032 seconds

Visualization of Delayed Gastric Emptying Flows After Esophageal Reconstruction Using a Gastric Graft (위장 이식편을 이용한 식도 재건술에서 위장 배출 지연 현상의 가시화)

  • Jeon, Hye-Jin;Park, Hee-Jin;Sung, Jae-Yong;Lee, Jae-Ik
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.22-27
    • /
    • 2010
  • The delayed gastric emptying flows have been visualized in this study when a gastric graft replaced an esophagus after esophagectomy. To construct visualization models for gastric grafts, the path data of gastric graft were extracted from the CT images for real patients and then the experimental models were made from silicone tube by considering elasticity of real stomach. During experiments, 200 ml of water or glycerin was poured into the gastric graft model and the gastric emptying time for total volume of fluid to pass pylorus was measured from the successive images captured by a high speed CCD. The gastric emptying time was compared according to the change of diameter and path (front or rear path) of gastric graft, and pyloroplasty or not. In case that the pyloroplasty was not conducted, the smaller was the diameter of gastric graft, the shorter was the gastric emptying time. However, if the pyloroplasty was conducted, the larger diameter of gastric graft was better for the gastric emptying. Although the rear path gave rise to longer gastric emptying time than the front path, it did not matter, if the pyloroplasty was conducted.

Temperature Inversion off Wasaka Bay in the East Sea, June of 1995 and 1996

  • Lee Chung-Il;Cho Kyu-Dae;Yun Jong-Hwui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.55-59
    • /
    • 2004
  • Temperature inversion off Wasaka Bay in the East Sea was studied using data measured on a CREAMS cruise in June of 1995 and 1996. Temperature inversion occurred mainly at the upper layer of the thermocline at a depth of no more than 20 m and around the thermal front between the TWC and the coastal waters of Japan. At some stations. temperature inversion had an influence un density inversion, while, in some other stations, high salinity water prevented density inversion.

  • PDF

Autonomous swimming technology for an AUV operating in the underwater jacket structure environment

  • Li, Ji-Hong;Park, Daegil;Ki, Geonhui
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.679-687
    • /
    • 2019
  • This paper presents the autonomous swimming technology developed for an Autonomous Underwater Vehicle (AUV) operating in the underwater jacket structure environment. To prevent the position divergence of the inertial navigation system constructed for the primary navigation solution for the vehicle, we've developed kinds of marker-recognition based underwater localization methods using both of optical and acoustic cameras. However, these two methods all require the artificial markers to be located near to the cameras mounted on the vehicle. Therefore, in the case of the vehicle far away from the structure where the markers are usually mounted on, we may need alternative position-aiding solution to guarantee the navigation accuracy. For this purpose, we develop a sonar image processing based underwater localization method using a Forward Looking Sonar (FLS) mounted in front of the vehicle. The primary purpose of this FLS is to detect the obstacles in front of the vehicle. According to the detected obstacle(s), we apply an Occupancy Grid Map (OGM) based path planning algorithm to derive an obstacle collision-free reference path. Experimental studies are carried out in the water tank and also in the Pohang Yeongilman port sea environment to demonstrate the effectiveness of the proposed autonomous swimming technology.

Three Dimensional Finite Element Analysis of Free Surface Flow Using Filling Pattern Technique and Adaptive Grid Refinement (형상 충전 및 격자 세분화를 이용한 삼차원 자유 표면 유동의 유한 요소 해석)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1348-1358
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation fur flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among seven filling patterns at each tetrahedral control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. The collapse of a water dam and the filling of a fluidity spiral have been analyzed. The numerical results have been in good agreement with the experimental results and the efficiency of the adaptive grid refinement and filling pattern techniques have been verified.

Response of a laterally loaded pile group due to cyclic loading in clay

  • Shi, Jiangwei;Zhang, Yuting;Chen, Long;Fu, Zhongzhi
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.463-469
    • /
    • 2018
  • In offshore engineering, lateral cyclic loading may induce excessive lateral movement and bending strain in pile foundations. Previous studies mainly focused on deformation mechanisms of single piles due to lateral cyclic loading. In this paper, centrifuge model tests were conducted to investigate the response of a $2{\times}2$ pile group due to lateral cyclic loading in clay. After applying each loading-unloading cycle, the pile group cannot move back to its original location. It implies that residual movement and bending strain are induced in the pile group. This is because cyclic loading induces plastic deformation in the soil surrounding the piles. As the cyclic load increases from 62.5 to 375 kN, the ratio of the residual to the maximum pile head movements varies from 0.30 to 0.84. Moreover, the ratio of the residual to the maximum bending strains induced in the piles is in a range of 0.23 to 0.82. The bending strain induced in the front pile is up to 3.2 times as large as that in the rear pile. Thus, much more protection measures should be applied to the front piles to ensure the serviceability and safety of pile foundations.

Radioactive iodine analysis in environmental samples around nuclear facilities and sewage treatment plants

  • Lee, UkJae;Kim, Min Ji;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1355-1363
    • /
    • 2018
  • Many radionuclides exist in normal environment and artificial radionuclides also can be detected. The radionuclides ($^{131}I$) are widely used for labeling compounds and radiation therapy. In Korea, the radionuclide ($^{131}I$) is produced at the Radioisotope Production Facility (RIPF) at the Korea Atomic Energy Research Institute in Daejeon. The residents around the RIPF assume that $^{131}I$ detected in environmental samples is produced from RIPF. To ensure the safety of the residents, the radioactive concentration of $^{131}I$ near the RIPF was investigated by monitoring environmental samples along the Gap River. The selected geographical places are near the nuclear installation, another possible location for $^{131}I$ detection, and downstream of the Gap River. The first selected places are the "front gate of KAERI", and the "Donghwa bridge". The second selected place is the sewage treatment plant. Therefore, the Wonchon bridge is selected for the upstream of the plant and the sewage treatment plant is selected for the downstream of the plant. The last selected places are the downstream where the two paths converged, which is Yongshin bridge (in front of the cogeneration plant). In these places, environmental samples, including sediment, fish, surface water, and aquatic plants, were collected. In this study, the radioactive iodine ($^{131}I$) detection along the Gap River will be investigated.

3D Characteristics of Dynamic Response of Seabed around Submerged Breakwater Due to Wave Loading (파랑하중에 의한 잠제 주변 해저지반의 3차원 동적응답 특성)

  • Hur, Dong-Soo;Park, Jong-Ryul;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.331-337
    • /
    • 2014
  • We analyzed the 3-D characteristics of the dynamic response of seabed around a submerged breakwater due to wave loading using a 3-D numerical scheme (LES-WASS-3D). Using our model, which considers the wave-structure-sandy seabed interactions in a 3-D wave field, we were able to investigate the 3-D characteristics of the pore-water pressure in the seabed around the submerged breakwater under various incident wave conditions. To verify the 3-D numerical analysis method suggested in this study, we compared the numerical results with the existing experimental results and found good agreement between them. The numerical analysis reveals that high pore-water pressure in the seabed is generated below a large wave height at the front slope of the submerged breakwater. It was also shown that the non-dimensional pore-water pressure in the seabed increases as the wave period increases because the wave energy dissipation decreases on the submerged breakwater and seabed as the wave period increases.

Inundation Simulation of Underground Space using Critical Dry Depth Scheme (임계 마름 수심기법을 이용한 지하공간 침수 모의)

  • Rhee, Dong Sop;Kim, Hyung-Jun;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.63-69
    • /
    • 2015
  • In this study, a 2D hydrodynamic model equipped with critical dry depth scheme was developed to reproduce the flow over staircase. The channel geometry of hydraulic experiment conducted by Ishigaki et al. was generated in the computational space, and the developed model was validated against flow properties such as discharge, velocity and momentum. In addition, the water surface profile and the velocity distribution evolved in flow over two layers staircases were analyzed. When the initial water depth at the upper floor was 0.3 m, the maximum velocity at lower floor was 4.2 m/s, and the maximum momentum was $1.2m^3/s^2$, and its conversion to force per unit width was 1.2 kN/m. This value was equivalent to the hydrostatic force with 50 cm water depth, and evacuation became difficult, as proposed by Ishigaki et al. For the flow over staircases connecting two layers, the maximum run-up height in flat part connecting two layers was approximately two times higher than the initial water depth in upper floor, and the rapid shock wave with sharp front and long tail was propagated.

Effect of the Freshwater Discharge on Seawater and Sediment Environment in a Coastal Area in Goheung County, South Korea

  • Nguyen, Hoang Lam;Jang, Min-Seok;Cho, Hyeon-Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.270-276
    • /
    • 2014
  • Seasonal characteristics of water and sediment qualities and potential effects of the freshwater discharge from a small tide embankment interior in a coastal area in Goheung county were investigated from May to September in 2012. Chemical oxygen demand values (COD) were mostly higher than 2 mg/L in summer ebb tide, which exceed the standard value of water quality criteria II of acceptable level for aquaculture activities. Nitrogen and phosphorus were found as the limiting nutrients for algae growth in summer and fall and in spring, respectively. Nitrogen was the limiting nutrient for diatom growth in the whole studied period. The sudden high values of COD, ammonia, dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP) were found in water sample collected from station 5 which located in front of the tide embankment sluice gate during spring ebb tide. The freshwater discharge form the tide embankment interior maybe affected the survey areas during a short time interval. Mean values of eutrophication index of the surveyed coastal region in spring, summer and fall were all bigger than 1. Water quality was mostly considered at level II which acceptable for aquaculture activities. Sediment quality in this study was generally in the range of standard for fisheries environment.

Numerical hydrodynamic analysis of an offshore stationary-floating oscillating water column-wave energy converter using CFD

  • Elhanafi, Ahmed;Fleming, Alan;Macfarlane, Gregor;Leong, Zhi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.77-99
    • /
    • 2017
  • Offshore oscillating water columns (OWC) represent one of the most promising forms of wave energy converters. The hydrodynamic performance of such converters heavily depends on their interactions with ocean waves; therefore, understanding these interactions is essential. In this paper, a fully nonlinear 2D computational fluid dynamics (CFD) model based on RANS equations and VOF surface capturing scheme is implemented to carry out wave energy balance analyses for an offshore OWC. The numerical model is well validated against published physical measurements including; chamber differential air pressure, chamber water level oscillation and vertical velocity, overall wave energy extraction efficiency, reflected and transmitted waves, velocity and vorticity fields (PIV measurements). Following the successful validation work, an extensive campaign of numerical tests is performed to quantify the relevance of three design parameters, namely incoming wavelength, wave height and turbine damping to the device hydrodynamic performance and wave energy conversion process. All of the three investigated parameters show important effects on the wave-pneumatic energy conversion chain. In addition, the flow field around the chamber's front wall indicates areas of energy losses by stronger vortices generation than the rear wall.