• Title/Summary/Keyword: Water film

Search Result 1,941, Processing Time 0.035 seconds

Modification of Soy Protein Film by Formaldehyde (Formaldehyde 처리에 의한 대두단백 필름의 물성 개선)

  • Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.372-378
    • /
    • 1998
  • Two types of formaldehyde-treated soy protein isolate (SPI) films, formaldehyde-incorporated and formaldehyde-adsorbed films, and control SPI films were prepared. Cross-linking effect of formaldehyde on selected film properties such as color, tensile strength (TS), elongation at break (E), water vapor permeability (WVP), and water solubility (WS) were determined. Physical properties of formaldehyde-incorporated films were not geneally different from those of control films, while almost all of those among formaldehyde-adsorbed films were significantly different. Through cross-linking development within formaldehyde-adsorbed films, WS decreased significantly (P<0.05) from 26.1% to 16.6%, and TS increased two times while E decreased two times compared with control films. This was caused by insolubilization and hardening of protein by cross-linking most likely attributed to the significant changes in properties of protein films reacted with formaldehyde.

  • PDF

Disjoining Process Isotherms for oil-water-oil Emulsion Films (오일-물-오일 에멜젼막의 Disjoining Pressure에 관한 연구)

  • 조완구
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.23 no.2
    • /
    • pp.71-96
    • /
    • 1997
  • We have used a novel liquid surface forces apparatus to determine the variation of disjoining pressure with film thickness for dodecane-water-dodecane emulsion films. The LSFA allows measurement of film thicknesses in the range 5-100 nm and disjoining pressure from 0-1500 Pa. Disjoining pressure isotherms are given for films stabilised by the nonionic surfactnat n-dodecyl pentaoxyethylene glycol ether$(C_{12}E_5)$ and n-decyl-$\beta$-D-glucopyranoside($C_{10}- $\beta$-Glu)$ and the anionic surfactant sodium bis(2-ethylhexyl) sulphosuccinate(AOT) in the presense of added electrolyte. For $C_{12}E_5$ and AOT, the emulsion films are indefinitely stable even for the highest concentration of NaCl tested (136.7 Nm) whereas the $C_{10}-{eta}-Glu$ film shows coalescence at this salt concentration. For film thicknesses greater than approximately 20 nm with all three surfactants, the disjoining pressure isotherms are reasonably well described in terms of electrostatic and van der Waals, forces. For the nonionic surfactant emulsion films, the charge properties of the monolayers are qualitatively similar to those seen for foam films. For AOT emulsion films, the monolayer surface potentials estimated by fitting the isotherms are similar to the values of the zeta potential measured for AOT stabilised emulsion droplets. For thin emulsion films certain systems showed isotherms which suggested the presence of an additional repulsive force with a range of approximately 20 nm.

  • PDF

Effects of Non-Absorbable Gases on the Absorption Process of Aqueous LiBr Solution Film in a Vertical Tube (II) (수직관내 리튬브로마이드 수용액막의 흡수과정에 대한 비흡수가스의 영향)

  • Kim, Byeong-Ju;Lee, Chan-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.499-509
    • /
    • 1998
  • In the absorption process of water vapor in a liquid film, the composition of the gas phase, in which a non-absorbable gas is combined with the absorbate influences the transport characteristics remarkably. In the present study, the absorption processes of water vapor into aqueous solution of lithium bromide in the presence of non-absorbable gases were investigated analytically. The continuity, momentum, energy and diffusion equations for the solution film and gas phase were formulated in integral forms and solved numerically. It was found that the mass transfer resistance in gas phase increased with the concentration of non-absorbable gas. However the primary resistance to mass transfer was in the liquid phase. As the concentration of non-absorbable gas in the absorbate increased, the liquid-vapor interfacial temperature and concentration of absorbate in solution decreased, which resulted in the reduction of absorption rate. The reduction of mass transfer rate was found to be significant for the addition of a small amount of non-absorbable gas to the pure vapor, especially at the outlet of an absorber where non-absorbable gases accumulated. At higher non-absorbable gas concentration, the decrease of absorption flux was almost linear to the volumetric concentration of non-absorbable gas.

Effect of NH3 plasma on thin-film composite membrane: Relationship of membrane and plasma properties

  • Kim, Eun-Sik;Deng, Baolin
    • Membrane and Water Treatment
    • /
    • v.4 no.2
    • /
    • pp.109-126
    • /
    • 2013
  • Surface modification by low-pressure ammonia ($NH_3$) plasma on commercial thin-film composite (TFC) membranes was investigated in this study. Surface hydrophilicity, total surface free energy, ion exchange capacity (IEC) and zeta (${\zeta}$)-potentials were determined for the TFC membranes. Qualitative and quantitative analyses of the membrane surface chemistry were conducted by attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy. Results showed that the $NH_3$ plasma treatment increased the surface hydrophilicity, in particular at a plasma treatment time longer than 5 min at 50 W of plasma power. Total surface free energy was influenced by the basic polar components introduced by the $NH_3$ plasma, and isoelectric point (IEP) was shifted to higher pH region after the modification. A ten (10) min $NH_3$ plasma treatment at 90 W was found to be adequate for the TFC membrane modification, resulting in a membrane with better characteristics than the TFC membranes without the modification for water treatment. The thin-film chemistry (i.e., fully-aromatic and semi-aromatic nature in the interfacial polymerization) influenced the initial stage of plasma modification.

Characterization of Al2O3 Thin Film Encasulation by Plasma Assisted Spatial ALD Process for Organic Light Emitting Diodes

  • Yong, Sang Heon;Cho, Sung Min;Chung, Ho Kyoon;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.234.2-234.2
    • /
    • 2014
  • Organic light emitting diode (OLED) is considered as the next generation flat panel displays due to its advantages of low power consumption, fast response time, broad viewing angle and flexibility. For the flexible application, it is essential to develop thin film encapsulation (TFE) to protect oxidation of organic materials from oxidative species such as oxygen and water vapor [1]. In many TFE research, the inorganic film by atomic layer deposition (ALD) process demonstrated a good barrier property. However, extremely low throughput of ALD process is considered as a major weakness for industrial application. Recently, there has been developed a high throughput ALD, called 'spatial ALD' [2]. In spatial ALD, the precursors and reactant gases are supplied continuously in same chamber, but they are separated physically using a purge gas streams to prevent mixing of the precursors and reactant gases. In this study, the $Al_2O_3$ thin film was deposited by spatial ALD process. We characterized various process variables in the spatial ALD such as temperature, scanning speed, and chemical compositions. Water vapor transmission rate (WVTR) was determined by calcium resistance test and less than $10-^3g/m^2{\cdot}day$ was achieved. The samples were analyzed by x-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM).

  • PDF

The Theory and Application of Diffusive Gradient in Thin Film Probe for the Evaluation of Concentration and Bioavailability of Inorganic Contaminants in Aquatic Environments (박막분산탐침(diffusive gradient in thin film probe)의 수중 생물학적 이용가능한 중금속 측정 적용)

  • Hong, Yongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.691-702
    • /
    • 2013
  • This review paper summarizes the theory, application, and potential drawbacks of diffusive gradient in thin film (DGT) probe which is a widely used in-situ passive sampling technique for monitoring inorganic contaminants in aquatic environments. The DGT probe employs a series of layers including a filter membrane, a diffusive hydrogel, and an ionic exchange resin gel in a plastic unit. The filter side is exposed to an aquatic environment after which dissolved inorganic contaminants, such as heavy metals and nuclides, diffuse through the hydrogel and are accumulated in the resin gel. After retrieval, the contaminants in the resin gel are extracted by strong acid or base and the concentrations are determined by analytical instruments. Then aqueous concentrations of the inorganic contaminants can be estimated from a mathematical equation. The DGT has also been used to monitor nutrients, such as ${PO_4}^{3-}$, in lakes, streams, and estuaries, which might be helpful in assessing eutrophic potential in aquatic environments. DGT is a robust in-situ passive sampling techniques for investigating bioavailability, toxicity, and speciation of inorganic contaminants in aquatic environments, and can be an effective monitoring tool for risk assessment.

Influence of $TiO_2$ Thin Film Thickness and Humidity on Toluene Adsorption and Desorption Behavior of Nanoporous $TiO_2/SiO_2$ Prepared by Atomic Layer Deposition (ALD)

  • Sim, Chae-Won;Seo, Hyun-Ook;Kim, Kwang-Dae;Park, Eun-Ji;Kim, Young-Dok;Lim, Dong-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.268-268
    • /
    • 2012
  • Adsorption and desorption of toluene from bare and $TiO_2$-coated silica with a mean pore size of 15 nm was studied using breakthrough curves and temperature programmed desorption. Thicknesses of $TiO_2$ films prepared by atomic layer deposition on silica were < 2 nm, and ~ 5 nm, respectively. For toluene adsorption, both dry and humid conditions were used. $TiO_2$-thin film significantly improved toluene adsorption capacity of silica under dry condition, whereas desorption of toluene from the surface as a consequence of displacement by water vapor was more pronounced for $TiO_2$-coated samples with respect to the result of bare ones. In the TPD experiments, silica with a thinner $TiO_2$ film (thickness < 2 nm) showed the highest reactivity for toluene oxidation to $CO_2$ in the absence and presence of water. We show that the toluene adsorption and oxidation reactivity of silica can be controlled by varying thickness of $TiO_2$ thin films.

  • PDF

Characterization of ALD Processed Al2O3/TiO2/Al2O3 Multilayer Films for Encapsulation and Barrier of OLEDs (OLED의 Barrier와 Encapsulation을 위한 원자층 증착 기술로 공정된 Al2O3/TiO2/Al2O3 다층 필름)

  • Lee, Sayah;Song, Yoon Seog;Kim, Hyun;Ryu, Sang Ouk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • Encapsulation of organic based devices is essential issue due to easy deterioration of organic material by water vapor. Thin layer of encapsulation film is required to preserve transparency yet protecting materials in it. Atomic layer deposition(ALD) is a promising solution because of its low temperature deposition and quality of the deposited film. $Al_2O_3$ or $Al_2O_3/TiO_2/Al_2O_3$ multilayer film has shown excellent environmental protection characteristics despite of thin thicknesses of the films. $Al_2O_3/TiO_2/Al_2O_3$ multilayer and 1.5 dyad layer of $Al_2O_3/polymer/Al_2O_3$ deposited by ALD was measured to have water vapor transmittance rate(WVTR) well below the detection limit($5.0{\times}10^{-5}g/m^2day$) of MOCON Aquatran 2 equipment.

  • PDF

A Monitoring System of Energy Usage for Apartment Houses Using Smart TV (스마트TV를 이용한 공동주택의 에너지 사용 모니터링 시스템)

  • Park, Sungsoo;Jin, Younghoon;Nam, Sanghun;Chai, Youngho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.6
    • /
    • pp.451-460
    • /
    • 2013
  • This paper presents the necessary elements and data flow in developing a monitoring system of energy usage for apartment houses with a Smart TV. Energy consumption data in each home are collected and analyzed in the HUB station by way of measuring instruments. And the amount of energy usage, such as electricity, gas, hot water, heating, water and other utilities are displayed through the Smart TV application. Energy consumption Database in the HUB station are processed and displayed in the browser of a Smart TV through XML, JAVASCRIPT and Flash. Smart TV users can get the energy consumption status through the energy consumption analysis display of the Smart TV application and improve the energy efficiency by comparing the usage patterns with neighboring houses. And the application display energy usage information, consumption ranking, rates to user as well. Furthermore, usage of last month or year can be compared to help to reduce the energy usage. The proposed system can provide the information about the amount of energy use to be reduced and the warning on the waste of energy.

Synthesis of transparent conductive film containing solution -deposited poly (3, 4-ethylenedioxythiophene) (PEDOT) and water soluble multi-walled carbon nanotubes

  • Tung, Tran Thanh;Kim, Won-Jung;Kim, Tae-Young;Lee, Bong-Seok;Suh, Kwang-S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.205-206
    • /
    • 2008
  • The transparent conductive film was prepared by bar coating method of poly (3, 4-ethylenedioxythiophene) (PEDOT) and poly (sodium 4-stylenesulfonate) grafted multi-walled carbon nanotubes (MWNT-PSS) nanocomposites solution on the polyethylene terephthalate (PET) film. In this case, multi-wall carbon nanotubes was treated by chemical methods to obtain water soluble MWNT-PSS and then blending with PEDOT. The non-covalent bonding of polymer to the MWNT surface was confirmed by Fourier transform infrared (FT-IR), thermal gravimetric analysis (TGA) and Transmission electro microscope (TEM) investigation also showed a polymer-wrapped MWNT structure. Furthermore, the electrical, transmission properties of the transparent conductive film were investigated and compared with control samples are raw PEDOT films.

  • PDF