• 제목/요약/키워드: Water electrolysis stack

검색결과 12건 처리시간 0.027초

고고도 무인기용 수전해 셀 및 스택의 제작 및 성능 평가 (Evaluation of the Performance of Water Electrolysis Cells and Stacks for High-Altitude Long Endurance Unmanned Aerial Vehicle)

  • 정혜영;이준영;윤대진;한창현;송민아;임수현;문상봉
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.341-348
    • /
    • 2016
  • The experiments related on structure and water electrolysis performance of HALE UAV stack were conducted in this study. Anode catalyst $IrRuO_2$ was prepared by Adam's fusion methods as 2~3 nm nano sized particles, and the cathode catalyst was used as commercial product of Premetek. The MEA (membrane electrode assembly) was manufactured by decal methods, anode and anode catalytic layers were prepared by electro-spray. HALE stack was composed of 5 multi-cells as $0.2Nm^3/hr$ hydrogen production rate with hydrogen pressure as 10 bar. The water electrolysis performance was investigated at atmospheric pressure and temperature of $55^{\circ}C$. Best performance of HALE UAV stack was recorded as cell voltage efficiency as 86%.

냉각계통 동적 예측을 위한 수전해 시스템 동적 모사 모델 (Dynamic Model of Water Electrolysis for Prediction of Dynamic Characteristics of Cooling System)

  • 윤상현;윤진원;황건용
    • 한국수소및신에너지학회논문집
    • /
    • 제32권1호
    • /
    • pp.1-10
    • /
    • 2021
  • Water electrolysis technology, which generates hydrogen using renewable energy resources, has recently attracted great attention. Especially, the polymer electrolyte membrane water electrolysis system has several advantages over other water electrolysis technologies, such as high efficiency, low operating temperature, and optimal operating point. Since research that analyzes performance characteristics using test bench have high cost and long test time, however, model based approach is very important. Therefore, in this study, a system model for water electrolysis dynamics of a polymer electrolyte membrane was developed based on MATLAB/Simulink®. The water electrolysis system developed in this study can take into account the heat and mass transfer characteristics in the cell with the load variation. In particular, the performance of the system according to the stack temperature control can be analyzed and evaluated. As a result, the developed water electrolysis system can analyze water pump dynamics and hydrogen generation according to temperature dynamics by reflecting the dynamics of temperature.

알카라인 수전해 시스템 성능 특성 및 안전에 관한 연구 (A Study on Performance Characteristic and Safety of Alkaline Water Electrolysis System)

  • 박순애;이은경;이정운;이승국;문종삼;김태완;천영기
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.601-609
    • /
    • 2017
  • Hydrogen is a clean, endlessly produced energy and it is easy to store and transfer. So, hydrogen is regarded as next generation energy. Among various ways for hydrogen production, the way to produce hydrogen by water electrolysis can effectively respond to fossil fuel's depletion or climate change. As interest in hydrogen has increased, related research has been actively conducted in many countries. In this study, we analyzed the performance characteristics and safety of water electrolysis system. In this study, we analyzed the performance characteristics and safety of water electrolysis system. The items for safety performance evaluation of the water electrolysis system were derived through analysis of international regulations, codes, and standards on hydrogen. Also, a prototype of the overall safety performance evaluation station was designed and developed. The demonstration test was performed with a prototype $10Nm^3/h$ class water electrolysis system that operated stably under various pressure conditions while measuring the stack and system efficiency. At 0.7MPa, the efficiency of the alkaline water electrolysis stack and the system that used in this study was 76.3% and 49.8% respectively. Through the GC analysis in produced $H_2$, the $N_2$ (5,157ppm) and $O_2$ (1,646 ppm) among Ar, $O_2$, $N_2$, CO and $CO_2$ confirmed as main impurities. It can be possible that the result of this study can apply to establish the safety standards for the hydrogen production system by water electrolysis.

알카리 수전해에서 전극 형상의 영향에 관한 연구 (A Study on Effect of the Shape of Electrodes in Alkaline Water Electrolysis)

  • 최수광;김종수;한진목;윤성호;김세웅;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.121-128
    • /
    • 2017
  • For an investigation on the effect of the shape of electrodes in alkaline water electrolysis, two kinds of stack with circular and square electrode array are used to visualize both for behaviors of hydrogen bubble around the electrodes and for measurements of hydrogen production from these two stacks. The electrolytes for the hydrogen production experiment were applied for 20 wt%, 25 wt%, 30 wt% and 35 wt% of KOH alkaline aqueous solutions. As a result, the adhesion length of bubbles attached around the square electrode in the visualization experiment was found to be 1.7 times longer compared with the attached around the circular electrode. In the hydrogen production experiments, the volume of hydrogen production of the stack by using circular electrode array was approximately 3% more than that of the stack with square electrode array. These observations may be caused by the effect of the bubbles attached to the around the electrodes obstructing mass transfer such as hydrogen exhaust and electrolyte supply.

CO2 저감을 위한 고체산화물 수전해 스택의 역수성가스 전환 반응 고찰 (A Study on Reverse-water Gas Shift Reaction in Solid Oxide Water Electrolysis Cell-stack for CO2 Reduction)

  • 김상국;전남기;이상혁;안치규;안진수
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.162-167
    • /
    • 2024
  • Fossil fuels have been main energy source to people. However, enormous amount of CO2 was emitted over the world , resulting in global climate crisis today. Recently, solid oxide electrolyzer cell (SOEC) is getting attention as an effective way for producing H2, a clean energy resource for the future. Also, SOEC could be applicable to reverse water-gas shift reaction process due to its high-temperature operating condition. Here, SOEC system was utilized for both H2 production and CO2 reduction process, allowing product gas composition change by controlling operating conditions.

5 Nm3 /hr급 알카라인 수전해 시스템 안전기준 분석 및 안전성능 평가에 관한 연구 (A Study on the Analysis of Safety Standard and Evaluation of Safety Performance for the 5 Nm3 /hr Class Alkaline Water Electrolysis System)

  • 김지혜;이은경;김민우;오건우;이정운;김우섭
    • 한국가스학회지
    • /
    • 제22권6호
    • /
    • pp.65-75
    • /
    • 2018
  • 풍력에너지는 낮에 비해 야간에 많은 잉여전력을 발생시키기 때문에 야간에 생산되는 전력은 버려지고 있는데, 이 문제를 해결하기 위해 풍력 등 재생에너지를 연계한 수전해 하이브리드 시스템 개발이 활발히 이루어지고 있다. 본 연구에서는 하이브리드 시스템 안전성 향상을 위해 국내 외 수전해 시스템 기준의 평가항목을 분석하였고, 평가 항목을 토대로 수전해 시스템의 안전성능 시험항목을 도출하였다. $5Nm^3/hr$급 수전해 시스템의 안전성능 평가를 위하여 시험항목 중 효율측정시험, 수소발생압력시험, 수소 순도시험을 평가하였다. 그 결과 수소발생량은 $5.10Nm^3/hr$, 스택효율은 $4.97kWh/Nm^3$로 산출되었고, 이때 발생한 수소의 순도는 99.993%로 국제기준 ISO 14687, SAE J2719에 명시된 순도보다 높은 순도의 수소를 생산하였음을 확인할 수 있었다. 본 연구 결과는 향후 수전해 시스템의 구축과 안전성능을 평가에 도움이 될 것이라고 기대한다.

Ti Mesh 처리 촉매전극을 이용한 고체고분자 전해질 전기분해 특성연구 (A Study on the PEM Electrolysis Characteristics Using Ti Mesh Coated with Electrocatalysts)

  • 심규성;김연순;김종원;한상도
    • 한국수소및신에너지학회논문집
    • /
    • 제7권1호
    • /
    • pp.29-37
    • /
    • 1996
  • Alkaline water electrolysis has been commercialized as the only large-scale method for a long time to produce hydrogen and the technology is superior to other methods such as photochemical, thermochemical water splitting, and thermal decomposition method in view of efficiency and related technical problem. However, such conventional electrolyzer do not have high electric efficiency and productivity to apply to large scale hydrogen production for energy or chemical feedstocks. Solid polymer electrolyte water electrolysis using a perfluorocation exchange membrane as an $H^+$ ion conductor is considered to be a promising method, because of capability for operating at high current densities and low cell voltages. So, this is a good technology for the storage of electricity generated by photovoltaic power plants, wind generators and other energy conversion systems. One of the most important R&D topics in electrolyser is how to minimize cell voltage and maximize current density in order to increase the productivity of the electrolyzer. A commercialized technology is the hot press method which the film type electrocatalyst is hot-pressed to soild polymer membrane in order to eliminate the contact resistance. Various technologies, electrocatalyst formed over Nafion membrane surface by means of nonelectrolytic plating process, porous sintered metal(titanium powder) or titanium mesh coated with electrocatalyst, have been studied for preparation of membrane-electrocatalyst composites. In this study some experiments have been conducted at a solid polymer electrolyte water electrolyzer, which consisted of single cell stack with an electrode area of $25cm^2$ in a unipolar arrangement using titanium mesh coated with electrocatalyst.

  • PDF

Operational Characteristics of High-Performance kW class Alkaline Electrolyzer Stack for Green Hydrogen Production

  • Choi, Baeck B.;Jo, Jae Hyeon;Lee, Taehee;Jeon, Sang-Yun;Kim, Jungsuk;Yoo, Young-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권3호
    • /
    • pp.302-307
    • /
    • 2021
  • Polymer electrolyte membrane (PEM) electrolyzer or alkaline electrolyzer is required to produce green hydrogen using renewable energy such as wind and/or solar power. PEM and alkaline electrolyzer differ in many ways, instantly basic materials, system configuration, and operation characteristics are different. Building an optimal water hydrolysis system by closely grasping the characteristics of each type of electrolyzer is of great help in building a safe hydrogen ecosystem as well as the efficiency of green hydrogen production. In this study, the basic operation characteristics of a kW class alkaline water electrolyzer we developed, and water electrolysis efficiency are described. Finally, a brief overview of the characteristics of PEM and alkaline electrolyzer for large-capacity green hydrogen production system will be outlined.

브라운가스의 특성에 대한 실험적 연구 (Experimental Study on the Characteristics of Brown Gas)

  • 김창희;오규형;강경수;박주식;배기광;김종원
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2006년도 에너지.가스.기후변화학회 연합춘계학술대회 및 특별심포지움
    • /
    • pp.262-262
    • /
    • 2006
  • The characteristics of Brown gas was experimentally studied in view of efficiency and flame propagation. For this study, the Brown gas stack with 7 cells was manufactured following the Brown gas related patents and reports. All measuring equipments were re-tested and calibrated by Korea Laboratory Accreditation Scheme (KOLAS) certified laboratories. Since the amount of produced gas is most crucial in determining the efficiency, we adopted two gas collecting methods such as bottle trap method and wet gas meter method. The energy efficiency of our own fabricated stack was measured to be 75%, which is comparable to general alkaline water electrolysis efficiency. In order to analyze the flame propagation characteristics of Brown gas, we measured the flame propagation pressure, velocity, and shape by using strain type pressure sensor, optical sensor, and high speed camera in conjunction with Schliren system, respectively. From the experimental results, it was found that the flame propagation behavior of Brown gas was almost the same as that of hydrogen and oxygen mixture gas in 2:1 molar ratio. Moreover, from the high speed camera analysis, we concluded that Brown gas flame exhibits explosion behavior as does mixture gas ($H_{2}:O_{2}=2:1$).

  • PDF

분리형 재생 연료전지를 위한 수전해 MEA 및 시스템 개발 (Development of PEMWE MEA & System for Discrete Regenerative Fuel Cell)

  • 최낙헌;윤대진;한창현;이준영;송민아;정혜영;최윤기;문상봉
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.335-340
    • /
    • 2016
  • Hydrogen production through proton exchange membrane water electrolysis (PEMWE) is expeditiously receiving international attention for renewable energy sources as well as energy storage system applications due to its environmentally friendly uses. A series of $Ir_{0.2}Ru_{0.8}O_2$ $Ir_{0.5}Ru_{0.8}O_2$ & $IrO_2$ catalysts were synthesized and electrochemically evaluated by using linear sweep voltammetry (LSV) technique. Furthermore, the PEMWE performances of full cells were evaluated by recording I-V Curves. The developed PEMWE stack was also operated in combination with a proton exchange membrane fuel cell (PEMFC) to demonstrate the discrete regenerative fuel cell (DRFC) performances. Produced hydrogen and oxygen from PEMWE were used as a fuel to operate PEMFC to establish a DRFC system.