• Title/Summary/Keyword: Water dissolution

Search Result 586, Processing Time 0.024 seconds

Development of the Dissolution Test for Viquidil Hydrochloride Capsules and Alibendol Tablets (염산비퀴딜 캡슐 및 알리벤돌 정의 용출시험에 관한 연구)

  • Hwang, Joung-Boon;Koo, Eun-Joo;Go, Seu-Youn;Cho, Kyung-Chul;Moon, Hyun-Ju;Cho, Soo-Yeul;Kang, Chan-Soon;Shon, Yeo-Won;Kim, Young-Ok;Sohn, Kyung-Hee;Cho, Dae-Hyun
    • YAKHAK HOEJI
    • /
    • v.54 no.5
    • /
    • pp.348-353
    • /
    • 2010
  • The dissolution test method and an analytical procedure by HPLC were developed and validated for viquidil hydrochloride capsules and alibendol tablets. These drugs were not yet characterized by the dissolution specifications in Korean Pharmaceutical Codex. So, with each reference and test drugs, we did the preliminary and standard experiments based on the Korean Pharmacopeia Guideline of dissolution testing for solid oral dosage forms. The dissolution test for viquidil hydrochloride capsules was carried out under sink conditions as follows: dissolution medium water, paddle rotation speed 50 rpm and vessel volume 900 ml. More than 90% of its label amount was released within 30 min in this method. Also the dissolution test for alibendol tablets was carried out under sink conditions as follows: dissolution medium water, paddle rotation speed 100 rpm and vessel volume 900 ml. More than 90% of its label amount was released within 45 min in this method. The dissolution samples were analyzed with a precise and accurate HPLC method. The developed dissolution test showed specificity, linearity, precision and accuracy within the acceptable range. The dissolution testing method described above was adequate for the purpose and may be proposed as a pharmacopeial standard to assess the performance of viquidil hydrochloride capsules and alibendol tablets.

Solubilization and Fomulation as Soft Gelatine Capsule of Biphenyldimethyldicarboxylate (비페닐디메칠디카르복실레이트의 가용화 및 연질캅셀제로의 설계)

  • Park, Gee-Bae;Chung, Chae-Kyong;Lee, Kwang-Pyo
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 1996
  • Biphenyldimethyldicarboxylate (PMC), which has been used to treat hepatitis, is insoluble in water, therefore it has low bioavailability after oral administration. For the purpose of increasing the dissolution rate of PMC, the physical mixtures and inclusion complexes of PMC and $dimethyl-{\beta}-cyclodextrin\;(DM\;{\beta}CD)\;or\;hydroxypropyl-{\beta}-cyclodextrin\;(HP{\beta}CD)$ in molar ratio of 1 : 1 and 1 : 2 were prepared by solvent evaporation method. Mixed micelles of PMC were prepared by reacting PMC with bile salts [sodium cholate(NaC), sodium glycocholate (NaGC)] and oleic acid (OA) or palmitoylcarnitine chloride(PCC). Chloroform/water partition coefficient (PC) of PMC was 36.14 in artificial gastric juice (AGJ) and 33.47 in artificial intestinal juice (AIJ), respectively, on the other hand octanol/water PC was 63.36. PMC formulation was prepared by reacting PMC with PEG400-glycerin system(95 : 5, 90 : 10, respectively) and PEG400-PEG4000-glycerin system (70 : 25 : 5, 65 : 25 : 10, respectively). Dissolution test was performed in AGJ and AIJ by paddle method at $37{\pm}0.5^{\circ}C$. The dissolution rates of PMC tablets on the market were 5.74% and 8.26% at AGJ and AIJ, respectively and marketed PMC capsules were 22.14% and 28.64% at AGJ and AIJ, respectively. The dissolution rates of inclusion complexes of PMC with $DM{\beta}CD$ and $HP{\beta}CD$ in a molar ratio of 1 : 1 were more fast than those of corresponding physical mixtures. The decreasing order of dissolution rates was as follows; PMC-PEG400-PEG4000-glycerin formulation > PMC-PEG400-glycerin formulation > mixed micelles > CD inclusion complexes. The dissolution rates of PMC-PEG400-glycerin and PMC-PEG400-PEG4000-glycerin formulation were most fast and the percentage of dissolution was almost 100% within 20 minutes. And their dissolution rates after 120 minutes were markedly increased as compared with capsules on the market (4.0-fold and 3.2-fold in PMC-PEG400-glycerin formulation at AGJ and AIJ, respectively, and 4.8-fold and 3.7-fold in PMC-PEG400-PEG4000-glycerin formulation at AGJ and AIJ, respectively).

  • PDF

Studies on Dissolution Rate of Flurbiprofen from Solvent Deposition Systems (Flurbiprofen 용매침착물(溶媒沈着物)의 용출특성(溶出特性)에 관(關)한 연구(硏究))

  • Choi, Bo-Kyung;Yong, Jae-Ick
    • Journal of Pharmaceutical Investigation
    • /
    • v.15 no.3
    • /
    • pp.100-112
    • /
    • 1985
  • Dissolution characteristics of flurbiprofen solvent deposited on ${\alpha}-cyclodextrin$, ${\beta}-cyclodextrin$, lactose and corn starch were studied to evaluate the pharmaceutical aspects of solvent deposition method where drug was solvent deposited on the surface of excipients. In a solvent deposition system, the drug to excipient ratio and kind of excipient affect much on dissolution rates of flurbiprofen. The solvent deposition system formation was confirmed by scanning electron microscope. By increasing the amounts of matrix, it was possible to enhance the dissolution rate of flurbiprofen solvent deposition system. The amount of flurbiprofen dissolved from ${\beta}-cyclodextrin$ deposition system (1:10) at 60 minutes was enhanced 6.5 times in water and 28 times in simulated gastric juice compared with flurbiprofen alone. Flurbiprofen solvent deposited system (1:10) enhanced dissolution rate greater than inclusion complex and dispersion system.

  • PDF

Dissolution Behavior and Hydrate Effect on $CO_{2}$ Ocean Sequestration

  • Kim Nam Jin;Kim Chong Bo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1216-1225
    • /
    • 2005
  • $CO_{2}$ ocean sequestration is one of the promising options to reduce $CO_{2}$ concentration in the atmosphere because the ocean has vast capacity for $CO_{2}$ absorption. Therefore, in the present investigation, calculations for solubility and dissolution behavior of liquid $CO_{2}$ droplets released at 1000 m and 1500 m deep in the ocean from a moving ship and a fixed pipeline have been carried out in order to estimate the $CO_{2}$ dissolution characteristics in the ocean. The results show liquid $CO_{2}$ becomes bubble at around 500 m in depth, and the solubility of seawater is about $5{\%}$ less than of pure water. Also, it is shown that the injection of liquid from a moving ship is a more effective method for dissolution than from a fixed pipeline, and the presence of hydrate on liquid $CO_{2}$ acts as a resistant layer in dissolving liquid $CO_{2}$.

Studies on Hydrophobic Drug-Soluble Carrier Coprecipitates(1)

  • Shin, Sang-Chul
    • Archives of Pharmacal Research
    • /
    • v.2 no.1
    • /
    • pp.35-47
    • /
    • 1979
  • In order to increase the dissolution rate of furosemide(4-choro-N-furfury1-5-sulfamoy1 anthranilic acid_, various ratio coprecipitates with water-soluble polymers, such as polyvinylpyrrolidone and polythylene glycol, of different molecular weight, were prepared and quantitatively studied by comparing their dissolution characteristics of furosemide at powder state and at nondisintegrating disk state containing constant surface area at various temperatures and rotating velocities. The dissolution characteristics of furosemide from pure furosemide disks and 1:2(w/w) furosemide-PVP coprecipitate disks were in accordance with Noyes-Nernst equation and the rate constant of dissolution was proportional to the square root of rotating velocity of the disks. The intrinsic rate of dissoluton at 150 rpm, 37.deg.C was $2.21{\times}10^{-7}$ for the PVP 10, 000 COPRECIPITATE, $1.64{\times}10^{-7}$ for the PVP 40, 000 coprecipitate, and$ 1.44 {\times} 10^{-7}$for the PVP 360, 000 corprecipitate, while the rate was $1.27{\times}10^{-8}M/cm^{2} min$ for pure furosemide, repectively. The activation energy of dissolution was about 17, 000 for furosemide and about 7, 300 cal/mole for the 1:2 furosemide PVP 40, 000 coprecipitate, respectively.

  • PDF

Environmentally Assisted Crack Growth Behavior of SA508 Cl.3 Pressure Vessel Steel

  • Kim, Jun-Hwan;Kim, In-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.154-159
    • /
    • 1998
  • In order to assess the susceptibility of the environmentally assisted cracking(EAC) on SA508 Cl.3 steel in primary water condition, potential step test and slow strain rate test(SSRT) were conducted in a simulated crack tip condition. In this test, anodic dissolution was dominant in the crack tip environments. Proposed simple dissolution model is a modification of Hishida's anodic dissolution model at the plastic zone. One can predict actual crack growth rate with the smooth specimen through this model.

  • PDF

Study on Polymorphism of Cimetidine (시메티딘의 다형에 관한 연구)

  • Sohn, Young-Taek;Kim, Ki-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.2
    • /
    • pp.81-87
    • /
    • 1993
  • Five crystalline forms of cimetidine, four anhydrous and a monohydrate, have been prepared, and their thermal behavriours have been studied by differential thermal analysis and thermo-gravimetry. The dissolution rates of the five forms were determined in distilled water at $37^{\circ}C$. The results showed a significant difference in the dissolution rate. Polymorphic transformation occurred spontaneously during storage at room condition and was accelerated by applied energy during formulation process-milling.

  • PDF

Formulation Optimization of the Tablet Prepared with Solid Dispersion of Biphenyl Dimethyl Dicarboxylate with Poloxamer (비페닐 디메칠 디카르복실레이트 고체분산체 정제 처방의 최적화)

  • Lee, Jang-Won;Park, Eun-Seok;Chi, Sang-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.4
    • /
    • pp.267-274
    • /
    • 1998
  • Biphenyl dimethyl dicarboxylate (DDB) has been used for the treatment of acute and chronic hepatitis. However, its poor solubility in water, $2.5\;{\mu}g/ml$, caused low bioavailability of the drug after its oral administration. In order to increase the dissolution of DDB in gastrointestinal tracts, consequently to increase the bioavailability of the drug, DDB tablet was prepared with solid dispersion of DDB with poloxamer 338 or 407 using a direct compression method. To improve the flowability of the solid dispersion, Aerosil was used as an adsorbent. The effect of formulation variables (poloxamer and Aerosil contents) on the dissolution rate of DDB from tablets was investigated using an analysis of variance. The dissolution rate of DDB from tablets was evaluated with KP II (paddle) method. The dissolution patterns of the drug from the tablet prepared with poloxamer 407 were affected significantly by the contents of poloxamers and Aerosil over the range employed, but those of the drug from the tablet prepared with poloxamer 338 were not. The optimum formulation of the DDB tablet, showed the same dissolution pattern as that of the reference, was obtained after polynomial equations of drug dissolution profiles for each formula were fitted to contour plots. The optimum formulation ratios of DDB:poloxamer 407:Aerosil were 1:2.5:2.5 and 1:5:5.

  • PDF

Effect of Pressurization and Cooling Rate on Dissolution of a Stationary Supercooled Aqueous Solution (정지상태 수용액에서 가압과 냉각속도가 과냉각해소에 미치는 영향)

  • Kim, Byung-Seon;Peck, Jong-Hyun;Hong, Hi-Ki;Kang, Chae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.12
    • /
    • pp.850-856
    • /
    • 2007
  • In a supercooled or capsule type ice storage system, aqueous solution (or water) may have trouble with non-uniform dissolution though the system contributes to the simplicity of system and ecological improvement. The non-uniform dissolution increases the instability of the system because it may cause an ice blockage in pipe or cooling part. In order to observe the supercooled state, a cooling experiment was performed with pressurization to an ethylene glycol(EG) 3 mass% solution in stationary state. Also, the effect of the pressurization from 101 to 505 kPa to the dissolution of supercooled aqueous solution was measured with the dissolution time of the supercooled aqueous solution at a fixed cooling rate of brine. At results, the dissolution of supercooled point decreased as the pressure of the aqueous solution in the vessel increased. Moreover, the dissolution point increased as the heat flux for cooling increased.

Improvement of Dissolution rate of Felodipine Using Solid Dispersion and its Sustained Release Oral Dosage Form (고체분산체에 의한 펠로디핀의 용출율 개선과 서방성 경구제제)

  • Gil, Young-Sig;Hong, Seok-Cheon;Yu, Chang-Hun;Shin, Hyun-Jong;Kim, Jong-Sung
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.3
    • /
    • pp.185-190
    • /
    • 2002
  • To improve the solubility of poorly water-soluble drug and to develop a sustained release tablets, the need for the technique, the formation of solid dispersion with polymeric materials that can potentially enhance the dissolution rate and extent of drug absorption was considered in this study. The 1:1, 1:4, and 1:5 solid dispersions were prepared by spray drying method using PVP K30, ethanol and methylene chloride. The dissolution test was carried out at in phosphate buffer solution at $37^{\circ}C$ in 100 rpm. Solid dispersed drugs were examined using differential scanning calorimetry and scanning electron microscopy, wherein it was found that felodipine is amorphous in the PVP K30 solid dispersion. Felodifine SR tablets were prepared by direct compressing the powder mixture composed of solid dispersed felodipine, lactose, Eudragit and magnesium stearate using a single punch press. In order to develop a sustained-release preparation containing solid dispersed felodipine, a comparative dissolution study was done using commercially existing product as control. The dissolution rate of intact felodipine, solid dispersed felodipine and its physical mixture, respectively, were compared by the dissolution rates for 30 minutes. The dissolution rates of felodipine for 30 minutes from 1:1, 1:4, 1:5 PVP K30 solid dispersion were 70%, 78% and 90%. However, dissolution rate offelodipine from the physical mixture was 5% of drug for 30 minutes. Our developed product Felodipine SR Tablet showed dissolution of 17%, 50% and 89% for 1, 4, and 7 hours. This designed oral delivery system is easy to manufacture, and drug releases behavior is highly reproducible and offers advantages over the existing commercial product. The dissolution rate of felodipine was significantly enhanced, following the formation of solid dispersion. The solid dispersion technique with water-soluble polymer could be used to develop a solid dispersed felodipine SR tablet.