• Title/Summary/Keyword: Water detection sensor

Search Result 183, Processing Time 0.022 seconds

Quasi-Distributed Water Detection Sensor Based On a V-Grooved Single-Mode Optical Fiber Covered with Water-Soluble Index-Matched Medium

  • Kim, Dae Hyun;Kim, Kwang Taek
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • The V-grooved single-mode fiber in which a surface part of the core was removed was investigated as a quasi-distributed water detection sensor. In the normal state, the V-grooved region is filled and covered with a specific RI (Refractive Index)-matched medium, and the sensor experiences minimal optical loss. As water invades the V-grooved region, the material is dissolved and removed, and a considerable optical loss occurs owing to the large RI difference between the fiber core and water. The experimental results showed the feasibility of the device as a sensor element of the quasi-distributed water detection sensor system based on general optical time domain reflectometry (OTDR).

A Study on an Activated Carbon Coated Sensor for the Detection of Marine Pollution (해양오염 감지를 위한 활성탄 코팅 센서에 관한 연구)

  • 최광재;김영한
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.373-378
    • /
    • 2000
  • Oil spill in sea water is the most frequent and significant problem of marine pollution. As an early detection sensor of the pollution, an activated carbon coated quartz crystal is prepared and examined for its performance of detection sensitivity and stability. Powdered activated carbon and phenol resin is coated on the surface of the sensor and the sensor is baked for an hour. Adsorption of acetone dissolved in water and salt water is measured using frequency shift of quartz crystal at different concentrations of solute material. The outcome indicates that the sensor preparation is adequate and the measurement of solute concentration is stable and sensitive enough to be implemented on the monitoring of solute concentration is stable and sensitive enough to be implemented in the monitoring of organic pollution of sea water.

  • PDF

A Study on the Improvement of Water-Leakage Detection Reliability in Local Heating System (지역난방배관의 누수감지 신뢰성 향상에 관한 연구)

  • 신춘식;안영주;변기식
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.66-72
    • /
    • 1999
  • Local heating transportation pipe has sensor and return lines to detect water-leakage. There are impulse and resistance comparison measurement types for a water-leakage detection. The impulse type shows large detection error within a measurement range. Since the resistance comparison type can find a comparative accurate single water-leakage point in the measurement range of heating pipe, it has been used to detect water-leakages these days. However if the multi water-leakages are happened in the measurement range of transportation pipe. the resistance comparison type shows a detection error point by the parallel resistance between a detection sensor line and ground. But the detection error will be minimized by the divided transportation pipe loops. In this research, it suggests the design of remote controlled detection system which can divide a large pipe loop and a possible single water-leakage measurement process in each divided loops.

  • PDF

A Neuro-Fuzzy Inference System for Sensor Failure Detection Using Wavelet Denoising, PCA and SPRT

  • Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.483-497
    • /
    • 2001
  • In this work, a neuro-fuzzy inference system combined with the wavelet denoising, PCA (principal component analysis) and SPRT (sequential probability ratio test) methods is developed to detect the relevant sensor failure using other sensor signals. The wavelet denoising technique is applied to remove noise components in input signals into the neuro-fuzzy system The PCA is used to reduce the dimension of an input space without losing a significant amount of information. The PCA makes easy the selection of the input signals into the neuro-fuzzy system. Also, a lower dimensional input space usually reduces the time necessary to train a neuro-fuzzy system. The parameters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The residuals between the estimated signals and the measured signals are used to detect whether the sensors are failed or not. The SPRT is used in this failure detection algorithm. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level and the hot-leg flowrate sensors in pressurized water reactors.

  • PDF

Direct Detection of Water-dissolved Ammonia Using Paper-based Analytical Devices

  • Yeong Beom Cho;Duc Cuong Nguyen;Si Hiep Hua;Yong Shin Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.67-74
    • /
    • 2023
  • A microfluidic paper-based analytical device (µPAD) is proposed for the selective detection of ammonia in water by using the modified Berthelot reagent and a fluidic channel consisting of hollow paper. The modified Berthelot reagents were uniformly dispersed in cyclohexane and then immobilized in a detection zone of the µPAD. The loading position of the reagents and the type of a sample flow channel were optimized to achieve a sensitive ammonia detection within a short analytical time. The NH3 µPAD exhibits a linear colorimetric response to the concentration of ammonia dissolved in water in the range of 1-100 mg L-1, and its limit-of-detection is 1.75 mg L-1. In addition, the colorimetric response was not influenced by the addition of 100 mg L-1 nitrogen containing compounds (sodium nitrate, sodium nitrite, uric acid, hydroxylamine, butylamine, diethylamine) or inorganic salts (NaCl, Na2HPO4), presenting the enough selectivity in the detection of water-dissolved ammonia against possible interferents.

Design of IoT-based Buoyancy-based Level Sensors for Low-cost and High-efficiency (저비용 고효율의 IoT 기반의 부력식 레벨센서 설계)

  • Byeongkon Kim;Sookwan Jang
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.378-383
    • /
    • 2024
  • This study developed a buoyancy-based level sensor composed of a buoyant object, a sensing unit, and a signal generation unit to meet the demand of low-cost, high-efficiency inundation-detection sensors. The volume of the submerged buoyant object remained nearly constant even in the presence of water-level fluctuations, allowing stable water-level data acquisition. The measurement resolution and measurement repeatability were confirmed to be within 0.4 mm and 0.3%, respectively. LoRa-based communication was used to implement the IoT-based inundation-detection sensor. The measurement deviation between the sensors is approximately 0.15%. The unresponsive level at which measurement was not possible was confirmed to be approximately 2 mm. Excluding this unresponsive range, the water level measurements exhibited very high linearity, allowing precise measurements. Furthermore, a test bed was established in an inundation-vulnerable area using buoyancy-based level sensors.

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

An Experimental Study on Fault Detection and Diagnosis Method for a Water Chiller Using Bayes Classifier (베이즈 분류기를 이용한 수냉식 냉동기의 고장 진단 방법에 관한 실험적 연구)

  • Lee, Heung-Ju;Chang, Young-Soo;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.508-516
    • /
    • 2008
  • Fault detection and diagnosis(FDD) system is beneficial in equipment management by providing the operator with tools which can help find out a failure of the system. An experimental study has been performed on fault detection and diagnosis method for a water chiller. Bayes classifier, which is one of classical pattern classifiers, is adopted in deciding whether fault occurred or not. Failure modes in this study include refrigerant leakage, decrease in mass flow rate of the chilled water and cooling water, and sensor error of the cooling water inlet temperature. It is possible to detect and diagnose faults in this study by adopting FDD algorithm using only four parameters(compressor outlet temperature, chilled water inlet temperature, cooling water outlet temperature and compressor power consumption). Refrigerant leakage failure is detected at 20% of refrigerant leakage. When mass flow rate of the chilled and cooling water decrease more than 8% or 12%, FDD algorithm can detect the faults. The deviation of temperature sensor over $0.6^{\circ}C$ can be detected as fault.

Implementation of Sensor Controller and Monitering System Using Film Type (필름형 센서를 이용한 센서 제어기 및 모니터링 시스템 구현)

  • Park, No-Jin;Lee, Ho-Woong;Yu, Hong-Kyeun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • Leak detection, the system is controlled by humanity's precious water resources, prepare for natural disasters and prevent damage to buildings and various industrial facilities. Especially because it causes serious environmental pollution, chemicals or oil spills, leak detection of various liquid(oil, water), the point at which the liquid leak is detected early on, and minimize environmental pollution, prevent damage of the equipment due to the leak, and the country's precious water resources to be used safely. In this paper, we solve these problems by using specialized film sensor, any person who is not a skilled technician, equipment or walls anywhere can be easily installed. also reduce unnecessary circuit, If film sensor is connected to operate, have a big competitive price, the detection of liquid and the surrounding environment according to, the sensor film that can set the sensitivity control, and monitoring system was implemented.

A Study on Oil's Contamination Detection System using Optical Fiber Sensor (광섬유 센서를 이용한 오일 오염도 검사시스템 연구)

  • Song, Doo-Sang;Hong, Jun-Hee;Ryu, Sang-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.541-546
    • /
    • 2012
  • This study investigates the detection system of oil pollution level using single optical fiber sensor. This study focus on sensing of oil pollution by moisture and iron powder which are representatives of oil pollution factor. In addition, It is placed that the water and iron powder as an oil pollution factor in the oil tank which is the oil circulation in. The oil pollution detection system was measured by the changing of intensity of light and sensing gap. The result of this experimentation not only confirmed the contamination by moisture volume in the oil tank from the section 190ppm to 540ppm, but also monitored the contamination by iron volume from the section 1200ppm to 3500ppm. This study confirmed effectiveness of this detection system using optical fiber sensor. There is expectations of measuring another section by various optical fiber sensor.