• 제목/요약/키워드: Water current energy

검색결과 682건 처리시간 0.026초

친환경건축물 인증제도 수자원 항목의 효과적 적용을 위한 평가방법 연구 (A study on certification criteria for effective application of green building rating system water resource)

  • 김혜진;김공숙;김병선
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.1049-1054
    • /
    • 2006
  • In many countries, methods to evaluate buildings have been investigated and practiced in order to reduce energy use and search for sustainable architecture while providing comfortable space for the users, in Korea, the current certification system has a short history, and has been improved for better practicability. Among many different factors in the certification system, the water resource problem is an important as the demand has been sharply increasing while reckless use and sewage treatment system causes the reduction of usable water. This study aims to find problems of water usage in building. water resource in the current certification will be used for the analysis of each factor in water resource, and the direction of improvement required in the certification in order to improve the water usage in buildigns will be proposed.

  • PDF

연안역 개발에 따른 해안과정의 변화 (The Change of Nearshore Processes due to the Development of Coastal Zone)

  • 이중우;이상진;이호;정대득
    • 한국항만학회지
    • /
    • 제13권1호
    • /
    • pp.155-166
    • /
    • 1999
  • The construction of the coastal structures and reclamation work causes the circulation reduced in the semi-closed inner water area and the unbalanced sediment budget of beach results in an alteration of beach topography. Among the various fluid motions in the nearshore zone water particle motion due to wave and wave-induced currents are the most responsible for sediment movement. Therefore it is needed to predict the effect of the environmental change because of development and so the prediction of wave transformation dose. The purpose of this study is to introduce the relation between waves wave-induced currents and sediment movement. In this study we will show numerical method using energy conservation equation involving reflection diffraction and reflection and the surfzone energy dissipation term due to wave breaking is included in the basic equation. For the wave-induced current the momentum equation was combined with radiation stresses lateral mixing and friction Various information is required in the prediction of wave-induced current depending on the prediction tool. We can predict changes in wave-induced current from the distribution of wave especially near the wave breaking zone. To evaluate these quantities we have to know the local condition of waves mean sea level and so on. The results from the wave field and wave-induced current field deformation models are used as input data of the sediment transport and bottom change model. Numerical model were established by a finite difference method then were applied to the development plan of the eastern Pusan coastal zone Yeonhwa-ri and Daebyun fishing port. We represented the result with 2-D graphics and made comparison between before and after development.

  • PDF

A Strategy for Homogeneous Current Distribution in Direct Methanol Fuel Cells through Spatial Variation of Catalyst Loading

  • Park, Sang-Min;Kim, Sang-Kyung;Peck, Dong-Hyun;Jung, Doo-Hwan
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.331-337
    • /
    • 2017
  • A simple strategy is proposed herein for attaining uniform current distribution in direct methanol fuel cells by varying the catalyst loading over the electrode. In order to use the same total catalyst amount for a serpentine flow field, three spatial variation types of catalyst loading were selected: enhancing the cathode catalyst loading (i) near the cathode outlet, (ii) near the cathode inlet, and (iii) near the lateral areas. These variations in catalyst loading are shown to improve the homogeneity of the current distribution, particularly at lower currents and lower air-flow rates. Among these three variations, increased loading near the lateral areas was shown to contribute most to achieving a homogenous current distribution. The mechanism underlying each catalyst loading variation method is different; very high catalyst-loading is shown to decrease the homogeneity of the distribution, which may be caused by water management in the thick catalyst layer thereof.

CFD를 이용한 수평축 조류발전 로터 성능의 기초연구 (Fundamental Study on the HAT Tidal Current Power Rotor Performance by CFD)

  • 조철희;임진영;이강희;채광수;노유호;송승호
    • 신재생에너지
    • /
    • 제5권2호
    • /
    • pp.3-8
    • /
    • 2009
  • Tidal current power system is one of ocean renewable energies that can minimize the environmental impact with many advantages compared to other energy sources. Not like others, the produced energy can be precisely predicted without weather conditions and also the operation rate is very high. To convert the current into power, the first device encountered to the incoming flow is the rotor that can transform into rotational energy. The performance of rotor can be determined by various design parameters including numbers of blade, sectional shape, diameter, and etc. The stream lines near the rotating rotor is very complex and the interference effects around the system is also difficult to predict. The paper introduces the experiment of rotor performance and also the fundamental study on the characteristics of three different rotors and flow near the rotor by CFD.

  • PDF

미래 그린 해수담수화 기술 (Future green seawater desalination technologies)

  • 김정빈;홍승관
    • 상하수도학회지
    • /
    • 제34권6호
    • /
    • pp.403-410
    • /
    • 2020
  • The difficulty of securing freshwater sources is increasing with global climate change. On the other hand, seawater is less affected by climate change and regarded as a stable water source. For utilizing seawater as freshwater, seawater desalination technologies should be employed to reduce the concentration of salts. However, current desalination technologies might accelerate climate change and create problems for the ecosystem. The desalination technologies consume higher energy than conventional water treatment technologies, increase carbon footprint with high electricity use, and discharge high salinity of concentrate to the ocean. Thus, it is critical to developing green desalination technologies for sustainable desalination in the era of climate change. The energy consumption of desalination can be lowered by minimizing pump irreversibility, reducing feed salinity, and harvesting osmotic energy. Also, the carbon footprint can be reduced by employing renewable energy sources to the desalination system. Furthermore, the volume of concentrate discharge can be minimized by recovering valuable minerals from high-salinity concentrate. The future green seawater desalination can be achieved by the advancement of desalination technologies, the employment of renewable energy, and the utilization of concentrate.

국내외 수전해 기술 및 대규모 실증 프로젝트 진행 현황 (Current Status of Water Electrolysis Technology and Large-scale Demonstration Projects in Korea and Overseas)

  • 백종민;김수현
    • 한국수소및신에너지학회논문집
    • /
    • 제35권1호
    • /
    • pp.14-26
    • /
    • 2024
  • Global efforts continue with the goal of transition to a "carbon neutral (net zero)" society with zero carbon emissions by 2050. For this purpose, the technology of water electrolysis is being developed, which can store electricity generated from renewable energies in large quantities and over a long period of time as hydrogen. Recently, various research and large-scale projects on 'green hydrogen', which has no carbon emissions, are being conducted. In this paper, a comparison of water electrolysis technologies was carried out and, based on data provided by the International Energy Agency (IEA), large-scale water electrolysis demonstration projects were analyzed by classifying them by technology, power supply, country and end user. It is expected that through the analysis of large-scale water electrolysis demonstration projects, research directions and road maps can be provided for the development/implementation of commercial projects in the future.

500kW 조류력 발전장치 개발 및 울돌목 실증시험 (Development of 500kW Tidal Current Energy Converter and Uldolmok Field Test)

  • 심우승;최익흥;이규찬;김해욱;배종국;민계식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.159.2-159.2
    • /
    • 2011
  • Hyundai Heavy Industries has developed a tidal current energy converter utilizing the accumulated technology as the world largest constructor for ship and offshore structures. The model has two sets of turbines in both ends in order to utilize the bi-directional current flows in flood and ebb tide. The torque produced by turbine in tidal current is directly delivered to generator along the horizontal axis, in which the turbine, gear, generator, gear and turbine are connected successively. The manufactured model for field test has the turbine diameter of 5 meters to produce the maximum power of 500kW at maximum current speed of 5m/s. The technical verification of tidal power converter was performed by means of small scale model test in towing tank as well as field test at the Strait of Uldolmok located in Jindo of Jeollanamdo province. Field test was performed by mounting the tidal current converter on the SEP(Self Elevating Platform) which could lower the 4 vertical legs on the seabed and could elevate platform over the water surface using the hydraulic power for itself. The field test performed for a month shows that power output is similar or larger compared with the expected one in design stage. This paper presents the development of tidal current energy converter and real sea field test by Hyundai Heavy Industries. This project has finished successfully and provided the technical advance toward commercial services for tidal current power generation in the south-west region in Korea.

  • PDF

다양한 조류 환경 및 경계 조건에 따른 모노파일형 해상구조물의 동특성 변화 분석 (Changes in Dynamic Characteristics of Monopile-Type Offshore Structures According to Tidal Environments and Boundary Conditions)

  • 정병진;박종웅;이진학;박진순
    • 한국해양공학회지
    • /
    • 제28권4호
    • /
    • pp.261-267
    • /
    • 2014
  • Because a change in the natural frequencies of a structure indicates structural health problems, monitoring the natural frequencies crucial. Long-term measurement for the Uldolmok tidal current power plant structure has shown that its natural frequencies fluctuate with a constant cycle twice a day. In this study, lab-scale tests to investigate the causes of these natural frequency fluctuations were carried out in a circulating water channel. Three independent variables in the tests that could affect the fluctuation of the natural frequencies were the water level, current velocity, and boundary condition between the specimen and the bottom of the circulating water channel. The experimental results were verified with numerical ones using ABAQUS. It was found that the fluctuation of the natural frequencies was governed by a decrease in stiffness due to the boundary condition much more than the effect of added mass. In addition, it was found that the natural frequency would decrease with an increase in the tidal current velocity because of its nonlinearity when the boundary condition was severely deteriorated due to damage.

500kW급 수평축 조류발전기의 수력 최적 설계 (Hydrodynamically Optimal Blade Design for 500kW Class Horizontal Axis Tidal Current Turbine)

  • 유기완
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.73-80
    • /
    • 2009
  • A tidal current turbine is designed and analyzed numerically by using blade element momentum theory. The rated power has a limitation because the diameter of the tidal current turbine cannot exceed the depth of sea water. This study investigates a horizontal axis tidal-current turbine with a rated power of 500 kW. NACA-6 series laminar foil shape is used for basic airfoil along the blade span. The distributions of chord length and twist angle along the blade span are obtained from the hydrodynamic optimization procedure. Prandtl's tip loss correction and angle of attack correction considering the three-dimensional effect are applied for this study. The power coefficient curve shows maximum peak at the rated tip speed ratio of 6.0, and the maximum torque coefficient is developed at the tip speed ratio of 4. The drag coefficient reaches about 0.85 at the design tip speed ratio.

Electrochemical behavior of dissolved hydrogen at Pt electrode surface in a high temperature LiOH-H3BO3 solution: Effect of chloride ion on the transient current of the dissolved hydrogen

  • Myung-Hee Yun;Jei-Won Yeon
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3659-3664
    • /
    • 2023
  • The electrochemical behavior of dissolved hydrogen (H2) was investigated at a Pt electrode in a high temperature LiOH-H3BO3 solution. The diffusion current of the H2 oxidation was proportional to the concentration of the dissolved H2 as well as the reciprocal of the temperature. In the polarization curve, a potential region in which the oxidation current decreases despite an increase in the applied potential between the H2 oxidation and the water oxidation regions was observed. This potential region was interpreted as being caused by the formation of a Pt oxide layer. Using the properties of the Cl- ion that reduces the growth rate of the Pt oxide layer, it was confirmed that there is a correlation between the Cl- ion concentration and the transient current of the H2 oxidation.