• Title/Summary/Keyword: Water curing

Search Result 941, Processing Time 0.023 seconds

An Experimental Study of Mechanical Properties of High-strength Concrete (고강도 콘크리트의 역학적 특성에 대한 실험 연구)

  • Yang, In-Hwan;Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.206-215
    • /
    • 2017
  • An experimental program was carried out to investigate the mechanical properties of high-strength concrete. High-strength concrete with compressive strengths of 80 to 120 MPa was tested. Test results are presented regarding effect of water-binder ratio on compressive strength and compressive strength gain. In addition, the effect of curing methods on compressive strength, elastic modulus, splitting tensile strength, and modulus of rupture is investigated. Test results of elastic modulus, splitting tensile strength, and modulus of rupture are compared with predictions from the current design recommendations. Predictions of elastic modulus by using KCI recommendation has good agreement with test results. However, predictions of modulus of rupture by using KCI recommendation underestimate the test results. ACI 363R recommendations predict well test results of splitting tensile strength and modulus of rupture. ACI 363R recommendations for predicting splitting tensile strength and modulus of rupture can be used for high-strength concrete with compressive strengths up to 120 MPa.

Application Properties of Slag Concrete in Winter Season (슬래그 활용 콘크리트의 동절기 적용 성능 평가)

  • Yoo, Jo-Hyeong;Kim, Woo-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.52-58
    • /
    • 2017
  • Concrete made with ground granulated blast-furnace slag(GGBS) has many advantage, including improved durability, workability and economic benefits. GGBS concrete is that its strength development is considerably slower under standard $20^{\circ}C$ curing conditions than that of portland cement concrete, although the ultimate strength is higher for same water-binder ratio. GGBS is not therefore used in application where high early age strength is required. In this study, to overcome the limitation of the initial strength decrease due to the use of slag, the slag substitution rate was changed to 30% under the low temperature curing temperature condition and the slag used concrete composition with the same or higher strength performance as OPC(Ordinary Portland Cement).

A COMPARATIVE STUDY BETWEEN DEGREE OF CONVERSION AND FLEXURAL STRENGTH OF COMPOSITE RESINS

  • Lee Seong-Hee;Pae Ahran;Kim Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.333-342
    • /
    • 2006
  • Statement of problem. Although many studies have been carried out to investigate the correlation between the degree of conversion and the flexural strength of composite resins, there is minimal information in the literature attempting to compare degree of conversion, flexural strength and their correlation between restorative composite resins and flowable composite resins. Purpose. The purposes of this study were to measure the degree of conversion and flexural strength of composite resins with different rheological behavior and to correlate the two properties. Materials and methods. Four restorative (Vit-1-escence, Z-250, Tetric ceram, Esthet-X) and four flowable (Aeliteflo, Admiraflow, Permaflo, Revolution) light-curing composite resins were investigated. The degree of conversion(DC) was analyzed with Fourier transfer infra-red spectroscopy(FTIR) spectrum by a potassium bromide(KBr) pellet transmission method. The spectrum of the unpolymerized specimen had been measured before the specimen was irradiated for 60s with a visible light curing unit. The Poiymerized specimen was scanned for its in spectrum. The flexural strength(FS) was measured with 3-point bending test according to ISO 4049 after storage in water at $37^{\circ}C$ for 24 hours. The data were statistically analyzed by an independent sample t-test and one-way ANOVA at the significance level of 0.05. The dependence of flexural strength on the degree of conversion was also analyzed by regression analysis. Results. Mean DC and FS values ranged from 43% to 61% and from 84.7MPa to 156.7MPa respectively. DC values of the flowable composite resins were significantly higher than those of restorative composite resins (P < 0.05). The FS values of restorative composite resins were greater than those of flowable composite resins. No statistically significant correlation was observed between the DC and the FS tested in any of the composites. The dependence of FS on DC in restorative or flowable composite resins was not significant. Conclusion. It can be concluded that radical polymerization of the organic matrix is not a major factor in determining flexural strength of the commercially available composite resins.

An Experimental Study on Factors Affecting the Leachability of Cs-137 in Cement Matrix and Leaching Model with Backfill (시멘트 고화체내 Cs-137의 침출능에 영향을 미치는 인자에 대한 실험적 연구와 뒷채움재를 고려한 침출 모델)

  • Park, Jong-Kil;Lee, Kun-Jai
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.374-386
    • /
    • 1991
  • Various factors affecting the teachability of Cs-137 in cement matrix have been investigated. Factors investigated include such as pressure curing, vibration curing, pressure leaching, the effect of the clay addition, ion-exchange resin(IRN-77) addition, and $CO_2$or air injection. Leaching experiments were conducted by the method recommended by IAEA. To analyze the experimental results, pore structure analysis of cement matrices was carried out by BET method. Cement matrices may not contact directly with underground water in real repository, since the surroundings of disposed drums are filled with backfill. Thus, the effect of backfill to the teachability has been investigated. The well-known diffusion theory was utilized to predict long term leach rate and cumulative fraction leached of Cs-137 or non-radioactive species.

  • PDF

A Study on the Properties of Anticorrosive for RC Structure (콘크리트구조물 보수용 방식피복재의 특성)

  • Moon, Han-Young;Shin, Dong-Gu;Kwon, Yong-Jin;Oh, Sang-Kun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.251-258
    • /
    • 2005
  • Up until now, most protection design has been concerned primarily with concrete's exterior protection from corrosion, its waterproof ability and its reparability. However, there are many cases in which service life of the concrete is shortened because suitability of the type of concrete surface has not been thoroughly investigated in the development process. According1y, this paper presents the development and test of the material for its reparability and its protection against corrosion in the case of wet surfaces (i.e. water supply facilities, sewage systems, and port facilities) in this country. From the test, both A type and B type are excellent for durability in watertightness, chemical resistance and abrasion. Test results of adhesive strength over $15kgf/cm^2$ under both wet and dry conditions, curing conditions and various temperatures conditions were also achieved in field tests.

Influence of Painting Materials based on Wasted Oil and Applying Timing on Carbonation and Chloride Resistances of High Volume SCM Concrete (폐유지류를 중심으로 한 도포제 종류 및 도포시기 변화가 혼화재 다량치환 콘크리트의 탄산화 및 염해저항성에 미치는 영향)

  • Han, Cheon-Goo;Choi, Young-Doo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • In this research, the influence of painting materials and applying timing on carbonation and chloride resistances of high volume SCMs concrete was evaluated. As a durability improving method, comparative tests were conducted with painting materials of ERCO (emulsified refined cooking oil), RCO (refined cooking oil), WR (water repellent agent), and ERCO + WR and with painting timings of right after demolding, and 28 days after the wet curing. From the experiment results, in the case of carbonation and chloride resistance, the carbonation depth and chloride penetration depth were decreased when the painting materials were applied in 28 days of wet curing. Additionally, for painting materials, with the order of ERCO, RCO, ERCO+WR, and WR, the carbonation and chloride penentration was delayed. Hence it is considered that ERCO shows the most favorable performance of resistance against carbonation and chloride penetration.

Hydration and Carbonation Properties of Different Hydraulic Lime (수경성석회 종류에 따른 수황 및 탄산화 특성)

  • Moon, Ki-Yeon;Choi, Moon-Kwan;Cho, Kye-Hong;Cho, Jin-Sang;Ahn, Ji-Whan;Yeon, Kyu-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.72-81
    • /
    • 2014
  • The main mineral phases of natural hydraulic lime (NHL) as a hydraulic lime binderare $Ca(OH)_2$, $C_2S$, $C_3S$, $C_3A$, and $SiO_2$ residues. Also, NHL has the characteristic of setting and hardening by a hydration reaction with water and by carbonation reactions with carbon dioxide from the air. In this study, in an effort to investigate changes of the mineral phases by NHL hydration and carbonation reactions, transitions of mineral phases and the microstructures of hardened pastes were analyzed by XRD, DSC, SEM, and by pore size distributions using domestic and foreign-sourced NHL pastes after curing at 1, 3, 7, and 28 days. On the basis of the analysis results, it was confirmed that domestic low-grade limestone can be used for the manufacturing of NHL. The main hydration mineral phases were $Ca(OH)_2$, $CaCO_3$, $C_2S$, and $SiO_2$ residues, while in the case of foreign-sourced NHL, a small amount of an aluminium hydration phase formed. Also, the $CaCO_3$ content after the carbonation reaction increased with an increase in the curing time. After hydration for 28 days, NHL containing considerable amounts of $C_2S$ and $C_3S$ showed higher carbonation ratios than others types.

DIMENSIONAL ACCURACY OF DENTURE BASE USING LASER SCANNER OF REVERSE ENGINEERING TECHNIC (Reverse Engineering 기법의 레이저 스캐너를 이용한 의치상의 정확도에 관한 연구)

  • Lee, Si-Hyuk;Chang, Ik-Tae;Yim, Soon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.2
    • /
    • pp.167-184
    • /
    • 1999
  • The purpose of this study was to evaluate and compare the at of denture bases processed by injection pressing technic using laser scanner of reverse engineering technic. The auther duplicated 20 maxillary edentulous models and 20 mandibular edentulous models, which were scanned on HYSCAN 45C 3D BCANNER(Hymarc Co., Canada). The scanned data were stored in the personal computer using SURFACER (Imageware Co. U.S.A.) software program. After 40 dentures were cured by PERform Inkovac system, SR-Ivocap system, Palajet system, and Sulfon system, they were stored in water at room temperature fir 24 hours. The dentures were scanned on HYSCAN 45C 3D SCANNER(Hymarc Co., Canada). The scanned data were stored in the personal computer using SURFACER (Imageware Co., U.S.A.) software program. By overlapping two images using the same program, the fit between two surfaces was scaled by positive and negative errors. The obtained results were as follows 1. In the upper denture, most of the positive errors occurred on the lingual side of anterior alveolar ridge and the negative errors were on the flange of denture bases. 2. In the lower denture, most of the positive errors occurred on the inner side of lingual flange and the negative errors were on the border of anterior labial flange areas, 3. There were no statistical differences among the positive errors of the four types of injection denture curing methods and also no statistical differences between negative errors except only in negative maximum errors. 4. In PERform system and SR-Ivocap system, they have the tendency of inaccurate at of lower denture bases comparing to that of upper denture bases. 5. The negative error scales were greater than the positive error scales in all types of injection denture curing methods.

  • PDF

Experimental Study on Bond Strength between Carbon Fiber Sheet and Concrete (탄소섬유쉬트와 콘크리트의 부착강도 실험연구)

  • 유영찬;최기선;최근도;이한승;김긍환
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.168-174
    • /
    • 2001
  • Carbon fiber sheet(CFS) has been widely used for strengthening of the concrete building structures due to its excellent physical properties such as high strength, light weight and high durability. Bond strength or behavior, on the other hands, between carbon fiber sheet and concrete is very important in strengthening the concrete member using CFS. Therefore the bond failure mechanism between CFS and concrete should be fully verified and understood. This study is to investigate the bond strength of CFS to the concrete by the direct pull-out test and the tensile-shear test. In the direct pull-out tests, the bond strength under the various environmental conditions such as curing temperature, surface condition on concrete and water content of concrete are evaluated. Also, the effective bond length, lu and the average bond stress, $\tau$y are examined in the tensile-shear tests. Based on the test results, it is concluded that the curing temperature is the most critical element for the bond strength between CFS and concrete. And, the proper value of lu and $\tau$y is recommended with 15 cm and 9.78∼ 11.88 kgf/$\textrm{cm}^2$ respectively.

Experimental Study on Thermal Conductivity of Concrete (콘크리트의 열전도율에 관한 실험적 연구)

  • 김국한;전상은;방기성;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.305-313
    • /
    • 2001
  • Conductivity is an important thermal property which governs heat transfer in a solid medium. Generally, the determination of conductivity in concrete is very difficult, because concrete is a heterogeneous material composed of cement, water, aggregate, et cetera and time dependent material of which properties change with curing age. In this study, influencing factors on thermal conductivity of concrete are quantitatively investigated by QTM-D3, a conductivity tester developed in Japan. Then, a prediction equation of thermal conductivity of concrete is suggested from the regression analysis of test results. To consider the factors influencing thermal conductivity of concrete, mortar, and cement paste, seven testing variables (age, amount of cement, types of admixtures, amount of coarse aggregate, fine aggregate ratio, temperature, and humidity condition) of the specimens are used. According to the experimental results, the amount of coarse aggregate and humidity condition of specimen are the main factors affecting the conductivity of concrete. Meanwhile, the conductivity of mortar and cement paste is strongly affected by the amount of cement and types of admixtures. However, the curing age has minor effect on the conductivity variation. Finally, the prediction formula of concrete conductivity as a function of aggregate amount, fine aggregate ratio, specimen temperature, and humidity condition is developed.