• Title/Summary/Keyword: Water cooling system

Search Result 1,159, Processing Time 0.03 seconds

A Study on the Design and Analysis of District Solar Heating and Cooling System with Preheating of Returning District Heating Water (지역난방수 환수 승온방식의 태양열 지역냉난방 시스템 분석)

  • Baek Nam-Choon;Shin U-Cheul;Lee Jin-Kook;Yoon Eung-Sang;Yoon Suk-Man
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.433-437
    • /
    • 2005
  • This study was carried out the design and analysis of solar thermal system with preheating of returning district heating water for the Chung-ju district heating and cooling system. Two different types of solar collectors are used for this system. TRNSYS simulation program was used for the analysis. As a results, the solar system efficiency is $35.8\%$ for the plate type and $45.1\%$ for the evacuated type solar collector in the case of $50^{\circ}C$ for the returning district heating water temperature. The returning district heating water temperature is on of the very important factors that is influence on the system efficiency. So the effect of the returning district heating water temperature on the system efficiency is analyzed in this study.

  • PDF

Effects of Water Amount in Refrigerant on Cooling Performance of Vehicle Air Conditioner (냉매 내 수분의 혼입량이 차량 에어컨의 냉각성능에 미치는 영향)

  • Moon, Seong-Won;Min, Young-Bong;Chung, Tae-Sang
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.319-325
    • /
    • 2011
  • This study was conducted to figure out the diagnosis basis of cooling performance depending on water amount in the refrigerant of air conditioner, which can be estimated by the temperatures and pressures along the refrigerant circulation line. A car air conditioner of SONATA III (Hyundai motor Co., Korea) was tested at maximum cooling condition at the engine speed of 1500 rpm in the room controlled at 33~$35^{\circ}C$ air temperature and 55~57% relative humidity conditionally. Measured variables were temperature differences between inlet and outlet pipe surfaces of the compressor, condenser, receive drier and evaporator; and high pressure and low pressure in the refrigerant circulation line; and temperature difference between inlet and outlet air of the cooling vent of evaporator. In this study, changes of the water amount in the refrigerant were correlated to the temperatures and pressure changes and also water amount caused poor cooling performance. As water amount increased in the refrigerant in the air conditioner, the performance of the cooling or the heat transfer became worse. Temporal variations of the surface temperature of the evaporator outlet pipe and the low-side pressure showed various patterns that could estimate the water amount. When the water amount caused bad cooling performance, the patterns of the temperature of the evaporator outlet pipe indicated irregular fluctuation greater than $5^{\circ}C$. When the diagnosis system is using just external sensors of the low-side pressure and the temperatures of inlet and outlet air of cooling vent of the evaporator, the precise pattern of bad cooling performance caused by excess water amount in the cooling line was irregular pressure fluctuation, 25 kPa under 120 kPa, and temperature, $12^{\circ}C$ and less.

Numerical Analysis of Water Hammer in Condenser Cooling Water Systems (콘덴서 냉각수 계통내의 수격현상 에 관한 수치해석)

  • 장효환;정회범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.638-646
    • /
    • 1985
  • Water hammering in nuclear or thermal power plant condenser cooling water systems in mathematically modeled and numerically analyzed based on the method of characteristics. Effects of variations of the discharge valve operating condition and the system geometry on the hydraulic transients are investigated for the cases when all or one of four pumps are tripped accidently due to loss of offisite power. Effects of ocean waves and tides on the steady-state and the transient operations are also studied. Water column separation in taken into account whenever necessary by means of a simplified physical model.

Eco-friendly Self-cooling System of Porous Onggi Ceramic Plate by Evaporation of Absorbed Water

  • Katsuki, Hiroaki;Choi, Eun-Kyong;Lee, Won-Jun;Kim, Ung-Soo;Hwang, Kwang-Taek;Cho, Woo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.153-159
    • /
    • 2018
  • Porous ceramic plates were prepared from Onggi clay and bamboo charcoal powder at 1100 and $1200^{\circ}C$ and their porous properties and water absorption, and the cooling effect of porous plates, were investigated to produce eco-friendly porous ceramics for a self-cooling system that relies on the evaporation of absorbed water. Porous properties were dependent on the particle size of charcoal powder pore forming additive and the firing temperature; properties were also found to be dependent on the total pore volume, average pore size and porosity, which had values of $0.103-0.243cm^3/g$, 0.81 - 2.56 mm and 20.9 - 38.2%, respectively, at $1100^{\circ}C$ and $0.04-0.18cm^3/g$, 0.33 - 2.03 mm and 10.8 - 30.9%, respectively, at $1200^{\circ}C$. Cooling temperature difference of flowing air parallel to surface of porous ceramic plates fired with two kinds of charcoal powder at $1100^{\circ}C$ was $3.5-3.6^{\circ}C$ at $26^{\circ}C$ and 60% of relative humidity in a closed box. Cooling temperature difference was dependent on the number of porous plates and the distance between porous plates. A simple and eco-friendly cooling system using porous ceramic plates fired from Onggi clay and charcoal powder was proposed.

An Experimental Study on the Temperature Distribution in IRWST

  • Kim, Sang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.820-829
    • /
    • 2004
  • The In-Containment Refueling Water Storage Tank (IRWST), one of the design improvements applied to the APR -1400, has a function to condense the high enthalpy fluid discharged from the Reactor Coolant System (RCS). The condensation of discharged fluid by the tank water drives the tank temperature high and causes oscillatory condensation. Also if the tank cooling water temperature approaches the saturated state, the steam bubble may escape from the water uncondensed. These oscillatory condensation and bubble escape would burden the undue load to the tank structure, pressurize the tank, and degrade its intended function. For these reasons simple analytical modeling and experimental works were performed in order to predict exact tank temperature distribution and to find the effective cooling method to keep the tank temperature below the bubble escape limit (93.3$^{\circ}C$), which was experimentally proven by other researchers. Both the analytical model and experimental results show that the temperature distributions are horizontally stratified. Particularly, the hot liquid produced by the condensation around the sparger holes goes up straight like a thermal plume. Also, the momentum of the discharged fluid is not so strong to interrupt this horizontal thermal stratification significantly. Therefore the layout and shape of sparger is not so important as long as the location of the sparger hole is sufficiently close to the bottom of the tank. Finally, for the effective tank cooling it is recommended that the locations of the discharge and intake lines of the cooling system be cautiously selected considering the temperature distribution, the water level change, and the cooling effectiveness.

Thermal Analysis of Water Cooled ISG Based on a Thermal Equivalent Circuit Network

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.893-898
    • /
    • 2014
  • Recently, the interior permanent synchronous motor (IPMSM) has been applied to an integrated starter and generator (ISG) for hybrid electric vehicles. In the design of such a motor, thermal analysis is necessary to maximize the power density because the loss is proportional to the power of a motor. Therefore, a cooling device as a heat sink is required internally. Generally, a cooling system designed with a water jacket structure is widely used for electric motors because it has advantages of simple structure and cooling effectiveness. An effective approach to analyze an electric machine with a water jacket is a thermal equivalent network. This network is composed of thermal resistance, a heat source, and thermal capacitance that consider the conduction, convection, and radiation. In particular, modeling of the cooling channel in a network is challenging owing to the flow of the coolant. In this paper, temperature prediction using a thermal equivalent network is performed in an ISG that has a water cooled system. Then, an experiment is conducted to verify the thermal equivalent network.

Numerical Analysis on the Flow Characteristics in Steam Ejector

  • Shin, You-Sik;Jin, Zhen-Hua;Chun, You-Sin;Lee, Sang-Chul;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.749-754
    • /
    • 2006
  • This study performed of a water cooling system by using a steam ejector and jet condenser to drop the temperature of the water in aquafarm by about $5^{\circ}C$ from $25^{\circ}C$ or higher in this research, to replace the present water cooling system, Ive focused on a water cooling system operated by latent heat of evaporation, thus this system needs a vacuum pressure to evaporate the water in enclosed tank. The water cooling effects are dependent on the vacuum pressure in the enclosed tank, and the cooling water is generated by evaporation. As the experimental results, the absolute vacuum pressure obtained was about $5{\sim}8mmHg$ using a steam driven ejector with jet condenser in experiments. The obtained results are respectively ${\Delta}T=7^{\circ}C$, ${\Delta}T=5^{\circ}C$ and ${\Delta}T=5.5^{\circ}C$ at heat exchanger flow rate 4L/M. The obtained results are respectively ${\Delta}T=5.5^{\circ}C$, ${\Delta}T=5.5^{\circ}C$ and ${\Delta}T=5.5^{\circ}C$ at heat exchanger flow rate 4.5L/M.

  • PDF

Optimization Design of Liquid Desiccant Cooling System (액체 제습식 냉방 시스템의 최적 설계)

  • Jeon, Dong-Soon;Lee, Sang-Jae;Kim, Seon-Chang;Kim, Young-Lyoul;Lee, Chang-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.419-428
    • /
    • 2010
  • This paper presents the optimization process of liquid desiccant cooling system using LiCl aqueous solution as a working fluid. Operating conditions(mass flow rate, conditioner outlet concentration, difference concentration) and design factors for heat exchangers(difference temperature of the district heating water, leaving temperature difference of the conditioner, leaving temperature difference of the regenerator, air temperature difference of the conditioner, air temperature difference of the regenerator) were optimized by response surface method. As a result, we obtained the 7.297 kW of cooling capacity and 0.788 of COP at optimized condition. Effect of difference temperature of hot water on system performances was also examined. As difference temperature of the district heating water increases, the cooling capacity increases and COP decreases.

Circuit Capacity of Water Cooling on Domestic Small Diesel Engine (소형(小型)디젤 기관(機關)의 냉각수(冷却水) 순환량(循環量)에 대(對)한 연구(硏究))

  • Kim, Sung Rai;Myung, Byung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.19 no.1
    • /
    • pp.91-96
    • /
    • 1992
  • Diesel engine being used on power tiller has over heating problem while running at the rated power range, The reason for overheating the engine is mainly owing to so small capacity of cooling system. This study was conducted to determine relatively optimum capacity of cooling system for the diesel engine. The results obtained are summarized as follows. 1. The capacity of cooling system for the diesel engine being used in the rural area was not sufficient to cool the engine at the rated power. 2. It is desirable that the cooling water flow rate was $12{\ell}/min$ if we used supplementary pump for increasing the cooling efficiency. 3. As cooling water was circuited $12{\ell}/min$, highest temperature of cooling water was $91^{\circ}C$. This value is within $88^{\circ}C{\pm}5^{\circ}C$ of SAE Standard criterion.

  • PDF

Development of Cold Water Dispenser using TEC Module (열전소자를 이용한 냉수기 개발에 관한 연구)

  • Lee, W.H.;Jung, S.W.;Koo, K.W.;Lee, M.S.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1566-1569
    • /
    • 1997
  • In this paper, we developed newer cooling system which has better efficiency and make smaller pollution than older cooling system compressor type by using TEC Module. And then we investigated application of Peltier Effect cooling technology applied to the cold water dispenser.

  • PDF