• Title/Summary/Keyword: Water cooling

Search Result 2,269, Processing Time 0.028 seconds

Effects of soy defatting on texturization of texturized vegetable proteins (대두 탈지 처리가 식물조직단백 조직화 특성에 미치는 영향)

  • Chan Soon Park;Mi Sook Seo;Sun Young Jung;Boram Park;Shin Young Park
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.875-884
    • /
    • 2023
  • In this study, the quality characteristics of texturized vegetable proteins (TVP) produced from defatted soy flour (DSF) were analytically compared with those of texturized vegetable proteins produced with isolated soy protein (ISP) and non-defatted soy flour (SF). The base raw material formulation consisted of 50% soy proteins, 30% gluten, and 20% corn starch. A cooling die-equipped extruder was used with a barrel temperature set at 190℃ and screw rotation speed of 250 rpm. With respect to the hardness of isolate soy proteins, that of soy flour and defatted soy flour was 22.4% and 68.8%, respectively, and gumminess was 17.6% and 44.3%, respectively. Defatting increased chewiness, shear strength, and springiness. Moisture content was higher in soy flour than in defatted soy flour, while there were no significant differences in terms of water absorption and turbidity. The pH was higher with soy flour than with defatted soy flour. Concerning color, the L and b values were higher with soy flour, while the a value was higher with defatted soy flour. These results suggest that defatting soybeans can improve the quality of plant-based proteins. Further research is needed to address the quality differences from those of isolated soy proteins.

Current Status and Perspectives in Varietal Improvement of Rice Cultivars for High-Quality and Value-Added Products (쌀 품질 고급화 및 고부가가치화를 위한 육종현황과 전망)

  • 최해춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.15-32
    • /
    • 2002
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s-1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great progress and success was obtained in development of high-quality japonica cultivars and quality evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice cultivars and special rices adaptable for food processing such as large kernel, chalky endosperm, aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer, Recently, new special rices such as extremely low-amylose dull or opaque non-glutinous endosperm mutants were developed. Also, a high-lysine rice variety was developed for higher nutritional utility. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and texture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak, hot paste and consistency viscosities of viscosities with year difference. The high-quality rice variety "IIpumbyeo" showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic microscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high probability of determination. The $\alpha$-amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were IIpumbyeo, Chucheongyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tonsil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, showed the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogradation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice breed. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large grain rices showed better suitability far fermentation and brewing. The glutinous rice were classified into nine different varietal groups based on various physicochemical and structural characteristics of endosperm. There was some close associations among these grain properties and large varietal difference in suitability to various traditional food processing. Our breeding efforts on improvement of rice quality for high palatability and processing utility or value-adding products in the future should focus on not only continuous enhancement of marketing and eating qualities but also the diversification in morphological, physicochemical and nutritional characteristics of rice grain suitable for processing various value-added rice foods.ice foods.

Prediction of Transpiration Rate of Lettuces (Lactuca sativa L.) in Plant Factory by Penman-Monteith Model (Penman-Monteith 모델에 의한 식물공장 내 상추(Lactuca sativa L.)의 증산량 예측)

  • Lee, June Woo;Eom, Jung Nam;Kang, Woo Hyun;Shin, Jong Hwa;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.182-187
    • /
    • 2013
  • In closed plant production system like plant factory, changes in environmental factors should be identified for conducting efficient environmental control as well as predicting energy consumption. Since high relative humidity (RH) is essential for crop production in the plant factory, transpiration is closely related with RH and should be quantified. In this study, four varieties of lettuces (Lactuca sativa L.) were grown in a plant factory, and the leaf areas and transpiration rates of the plants according to DAT (day after transplanting) were measured. The coefficients of the simplified Penman-Monteith equation were calibrated in order to calculate the transpiration rate in the plant factory and the total amount of transpiration during cultivation period was predicted by simulation. The following model was used: $E_d=a*(1-e^{-k*LAI})*RAD_{in}+b*LAI*VPD_d$ (at daytime) and $E_n=b*LAI*VPD_n$ (at nighttime) for estimating transpiration of the lettuce in the plant factory. Leaf area and transpiration rate increased with DAT as exponential growth. Proportional relationship was obtained between leaf area and transpiration rate. Total amounts of transpiration of lettuces grown in plant factory could be obtained by the models with high $r^2$ values. The results indicated the simplified Penman-Monteith equation could be used to predict water requirements as well as heating and cooling loads required in plant factory system.

Study on the Physico-chemical Properties of Rice Grains Harvested from Different Regions (재배환경이 다른 쌀의 이화적적 특성에 관한 연구)

  • Kwang-Ho Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.2
    • /
    • pp.234-242
    • /
    • 1987
  • Rough rice samples of four rice varieties were collected from twenty five locations through the country just after 1986 rice growing season. Various characteristics related to rice grain quality were observed to clarify the degree of locational variation of physico-chemical properties, and cooking and eating quality of rice grains. Grain weight, grain shape, degree of translucency and chalkiness of rice grain, amylogram properties of rice flour, water uptake during cooking, and cooked rice appearance were different between varieties tested. High degree of locational variation were found in following characteristics, degree of translucency and chalkiness of rice grain, water uptake during cooking, cooked rice appearance and amylogram properties. Eating quality of cooked rice indicated by sensory score showed different tendency of locational variation between rice varie-ties tested, and locations produced rice grains showing better eating quality were not coinside with among varieties tested. Grain weight, degree of translucency and chalkiness of rice grain, and cooked rice appearance of rice samples showing better eating quality were quite different to rice grains showing poor eating quality. Rice having better eating quality of a japonica variety, Chucheong, showed higher value of peak and final viscosity, viscosity after cooling, consistency and set back on amylograph compared with those of poor eating quality rices, and break down value of better rice was lower than that of poor rice. However, a Tongil type variety, Taebaek, did not show any consistent difference between better and poor rices. Rice samples from six locations in Chucheong and four locations in Taebaek showed special properties on amylogram compared with other rices collected in this study.

  • PDF

Geochemical Studies on Au-Ag Hydrothermal Vein Deposits, Republic of Korea : Goryeong-Waegwan Mineralized Area (한반도(韓半島) 금(金)-은(銀) 열수(熱水) 광상(鑛床)의 지화학적(地化學的) 연구(硏究) : 고령(高靈)-왜관지역(倭館地域) 광화대(鑛化帶))

  • So, Chil-Sup;Choi, Sang-Hoon;Chi, Se-Jung;Choi, Seon-Gyu;Shelton, Kevin L.
    • Economic and Environmental Geology
    • /
    • v.22 no.3
    • /
    • pp.221-235
    • /
    • 1989
  • Gold-silver mineralization of the Goryeong-Waegwan area was deposited in three stages of quartz and calcite veins which fill fissures in Cretaceous sedimentary rocks of the Sindong Group. Radiometric dating indicates that mineralization is Late Cretaceous age(98 Ma) likely associated genetically with intrusion of a small biotite granite stock. Fluid inclusion and stable isotope data indicate that Au-Ag ore was deposited at temperatures between $280^{\circ}C$ and $230^{\circ}C$ from fluids with salinities between 1.7 and 8.7 equiv.wt.% NaCl. Evidence of boiling indicates pressures of <100 bars, corresponding to depths of 425 and 1,150m, respectively, assuming lithostatic and hydrostatic loads. Within ore stage I there is an apparent decrease in ${\delta}^{34}S$ values of $H_2S$ with paragenetic time, from +1.4 to -2.5 per mil. This pattern was likely achieved through progressive increases in pH and activity of oxygen accompanying boiling. Measured and calculated hydrogen and oxygen isotope values of ore-forming fluids(${\delta}D$ = -90 to -100 per mil; ${\delta}^{18}O$ = +3.9 to -11.4 per mil) indicate meteoric water dominance, approaching unex-changed meteoric water values. Au-Ag deposition is thought to be the result of cooling and dilution of a boiling fluid through mixing with less evolved meteoric waters.

  • PDF

Au-Ag-Te Mineralization by Boiling and Dilution of Meteoric Ground-water in the Tongyeong Epithermal sold System, Korea: Implications from Reaction Path Modeling (광화유체의 비등과 희석에 의한 통영 천열수계 Au-Ag-Te 장화작용에 대한 반응경로 모델링)

  • Maeng-Eon Park;Kyu-Youl Sung
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.507-522
    • /
    • 2001
  • At the Tongyeong mine, quartz, rhodochrosite (kutnahorite), muscovite, illite, pyrite, galena, chalcopyrite. sphalerite, acanthite, and hessite are the principal vein minerals. They were deposited under epithermal conditions in two stages. Ore mineral assemblages and associated gangue phases in stage can be clearly divided into two general associations: an early cycle (band) that appeared with introduction of most of the sulfides and electrum, and a later cycle in which base metal and carbonate-bearing assemblages (mostly rhodochrosite) became dominant. Tellurides and some electrum occur as small rounded grains within subhedral-to euhedral pyrite or anhedral galena in stageII. Sulfide mineralization is zoned from pyrite to galena and sphalerite. We have used computer modeling to simulate formation of four stages of vein genesis. The reaction of a single fluid with andesite host rock at 28$0^{\circ}C$, isobaric cooling of a single fluid from 26$0^{\circ}C$ to 12$0^{\circ}C$, and boiling and mixing of a fluid with both decreasing pressure and temperature were studied using the CHILLER program. Calculations show that the precipitation of alteration minerals is due to fluid-andesite interaction as temperature drops. Speciation calculations confirm that the hydrothermal fluids with moderately high salinities and pH 5.7 (acid), were capable of transporting significant quantities of base metals. The abundance of gold in fluid depends critically on the ratio of total base metals and iron to sulfide in the aqueous phase because gold is transported as an Au(HS)$_2$- complex, which is sensitive to sulfide activity. Modeling results for Tongyeong mineralization show strong influence of shallow hydrogenic processes such as boiling and fluid mixing. The variable handing in stageII mineralization is best explained by maltiple boilings of hydrothermal fluid followed by lateral mixing of the fluid with overlying diluted, steam-heated ground water. The degree of similarity of calculated mineral assemblages and observed electrum composition and field relationships shows the utility of the numerical simulation method in identifying chemical processes that accompany boiling and mixing in Te-bearing Au-Ag system. This has been applied in models to narrow the search area for epithermal ores.

  • PDF

Effect of Coolant on PEMFC Performance in Low Humidification Condition (저가습 조건에서 냉각 유체의 고분자전해질 연료전지에 대한 영향)

  • Lee, Hung-Joo;Song, Hyun-Do;Kwon, Jun-Taek;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • Proton exchange membrane fuel cell(PEMFC) performance could be affected by various factors such as cell temperature, total pressure, partial pressure of reactants and relative humidity. Hydrogen ion is combined with water to form hydronium ion [$H_3O^+$] and pass through membrane resulting electricity generation. Cooling system is needed to remove heat and other uses on large scale fuel cell. In case that collant conductivity is increased, fuel cell performance could be decreased because produced electricity could be leaked through coolant. In this study, triple distilled water(TDW) and antifreeze solution containing ethylene glycol was used to observe resistance change. Resistance of TDW was taken 28 days to reach preset value, and effect on fuel cell operation was not observed. Resistance of antifreeze solution was not reached to preset value up to 48 days, but performance failure occurred presumably caused by bipolar plate junction resulting stoppage resistance experiment. Generally PEMFC humidification is performed near-saturated operating conditions at various temperatures and pressures, but non-humidifying condition could be applied in small scale fuel cell to improve efficiency and reduce system cost. However, it was difficult to operate large scale fuel cell without humidifying, especially higher than $50{\sim}60^{\circ}C$. In case of small flux such as 0.78 L/min, temperature difference between inlet and outlet was occurred larger than other cases resulting performance decrease. Non-humidifying performance experiments were done at various cell temperature. When both of anode and cathode humidification were removed, cell performance was strongly depended on cell operating temperature.

A Study on the Characteristic Trace Organic Pollutants in the Industrial Wastewater (산업폐수중 미량유기오염물질 배출 특성)

  • Chung, Y.H.;Kim, S.C.;Shin, S.K.;Kang, I.G.;Lee, J.I.;Lee, W.S.;Lee, J.B.
    • Analytical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.62-72
    • /
    • 1998
  • This study was performed to characterize the trace organic pollutants in the industrial wastewater and to establish the database of the trace organic pollutants. The four manufacturing industries, which are refined petroleum, industrial chemicals, rubber & plastics and fabricated metals, were surveyed. The wastewater and discharging water of these 30 factories are analyzed to characterize the trace organic pollutants. In industrial chemicals, the kinds of products and organic pollutants are very various. Therefore to select the characteristic organic pollutants in this categories are also very difficult. In industrial chemicals, the gas chromatograpic peak patterns of wastewater are represented the various type according to their products, therefore the typical patterns of the characteristic organic pollutants could not be obtained because the kinds of manufactured goods and organic pollutants are very various. In refined petroleum, the effluent is discharged in the distillatory process of atmosphere pressure and contained the saturated hydrocarbons, phenol compounds, benzene compounds and naphtalene compounds. The saturated hydrocarbons peaks from $C_{15}$ to $C_{35}$ are represented the typical oil patterns by the uniform intervals therefore the peak can be easily distinguished. In rubber & plastics, the wastewater is discharged in the washing process which contains the additives. The problem of wastewater is not serious because the manufacturing process is not produced the effluent or the produced cooling water is recycled in that process.

  • PDF

DIFFERENCE IN BOND STRENGTH ACCORDING TO FILLING TECHNIQUES AND CAVITY WALLS IN BOX-TYPE OCCLUSAL COMPOSITE RESIN RESTORATION (박스 형태의 복합레진 수복시 충전법 및 와동벽에 따른 결합력 차이에 관한 연구)

  • Ko, Eun-Joo;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.350-355
    • /
    • 2009
  • Bond strength depends on characteristics of bonding surface and restorative technique. The majority of studies dealing with dentin bond strength were carried out on flat bonding surface, therefore, difference of bond strength between axial wall and pulpal wall is not clear yet. This study evaluated bonding difference between cavity walls in class I composite resin restoration with different filling techniques. Twenty extracted caries-free human third molars were used. Cavities were prepared in 6 ${\times}$4 ${\times}$3 mm box-type and divided into four groups according to filling technique and bonding surface: Group I; bulk filling - pulpal wall, Group II; bulk filling - axial wall, Group III; incremental filling - pulpal wall, Group IV; incremental filling - axial wall. Cavities were filled with Filtek $Z250^{(R)}$(3M/ESPE., USA) and Clearfill SE $bond^{(R)}$(Kuraray, Japan). After 24 hour-storage in $37^{\circ}C$water, the resin bonded teeth were sectioned bucco-lingualy at the center of cavity. Specimens were vertically sectioned into 1.0 ${\times}$1.0 mm thick serial sticks perpendicular to the bond surface using a low-speed diamond saw (Accutom 50, Struers, Copenhagen, Denmark) under water cooling. The trimmed specimens were then attached to the testing device and in turn, was placed in a universal testing machine (EZ test, Shimadzu Co., Kyoto, Japan) for micro-tensile testing at a cross-head speed of 1 mm/min. The results obtained were statistically analyzed using 2-way ANOVA and t-test at a significance level of 95%. The results were as follows: 1. There was no significant difference between bulk filling and incremental filling. 2. There was no significant difference between pulpal wall and axial wall, either. Within the limit of this study, it was concluded that microtensile bond strength was not affected by the filling technique and the site of cavity walls.

Physical Characteristics and Classification of the Ulleung Warm Eddy in the East Sea (Japan Sea) (동해 울릉 난수성 소용돌이의 물리적 특성 및 분류)

  • SHIN, HONG-RYEOL;KIM, INGWON;KIM, DAEHYUK;KIM, CHEOL-HO;KANG, BOONSOON;LEE, EUNIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.298-317
    • /
    • 2019
  • The physical characteristics of the Ulleung Warm Eddy (UWE) and its relationship with the East Korea Warm Current (EKWC) were analyzed using the CMEMS (Copernicus Marine Environment Monitoring Service) satellite altimetry data and the CTD data of the National Institute of Fisheries Science (NIFS) near the Ulleung Basin from 1993 to 2017. The distribution of the UWEs coupled with EKWC accounts for 81% of the total number of the UWEs. Only 7% of the total eddies are completely separated from the EKWC. The UWE has the characteristics of high temperature and high salinity water inside of it when it is formed from the EKWC. However, when the UWE is wintering, its internal structure changes greatly. In the winter, surface homogeneous layer of $10^{\circ}C$ and 34.2 psu inside of the UWE is produced by vertical convection from sea-surface cooling, and deepened to a maximum depth of approximately 250 m in early spring. In summer, the UWE changes into a structure with a stratified structure in the upper layer within a depth of 100 m and a homogeneous layer made in winter in the lower layer. 62 UWEs were produced for 25 years from 1993 to 2017. on average, 2.5 UWEs were formed annually, and the average life span was 259 days (approximately 8.6 months). The average size of the UWEs is 98 km in the east-west direction and 109 km in the north-south direction. The average size of UWE using satellite altimetric data is estimated to be 1~25 km smaller than that using water temperature cross-sectional data.