• Title/Summary/Keyword: Water condensation

Search Result 475, Processing Time 0.031 seconds

Experimental study on the condensation of sonic steam in the underwater environment

  • Meng, Zhaoming;Zhang, Wei;Liu, Jiazhi;Yan, Ruihao;Shen, Geyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.987-995
    • /
    • 2019
  • Steam jet condensation is of great importance to pressure suppression containment and automatic depressurization system in nuclear power plant. In this paper, the condensation processes of sonic steam jet in a quiescent subcooled pool are recorded and analyzed, more precise understanding are got in direct contact condensation. Experiments are conducted at atmospheric pressure, and the steam is injected into the subcooled water pool through a vertical nozzle with the inner diameter of 10 mm, water temperature in the range of $25-60^{\circ}C$ and mass velocity in the range of $320-1080kg/m^2s$. Richardson number is calculated based on the conservation of momentum for single water jet and its values are in the range of 0.16-2.67. There is no thermal stratification observed in the water pool. Four condensation regimes are observed, including condensation oscillation, contraction, expansion-contraction and double expansion-contraction shapes. A condensation regime map is present based on steam mass velocity and water temperature. The dimensionless steam plume length increase with the increase of steam mass velocity and water temperature, and its values are in the range of 1.4-9.0. Condensation heat transfer coefficient decreases with the increase of steam mass velocity and water temperature, and its values are in the range of $1.44-3.65MW/m^2^{\circ}C$. New more accurate semi-empirical correlations for prediction of the dimensionless steam plume length and condensation heat transfer coefficient are proposed respectively. The discrepancy of predicted plume length is within ${\pm}10%$ for present experimental results and ${\pm}25%$ for previous researchers. The discrepancy of predicted condensation heat transfer coefficient is with ${\pm}12%$.

Condensation oscillation characteristic of steam with non-condensable gas through multi-hole sparger at low mass flux

  • Dandi Zhang;Lili Tong;Xuewu Cao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.780-791
    • /
    • 2023
  • To study oscillation characteristic of steam and non-condensable gas direct contact condensation through multi-hole sparger at low mass flux, a series of experiments of pure steam and mixture gas condensation have been carried out under the conditions of steam mass flux of 20-120kg/m2s, water temperature of 20-95 ℃ and mass fraction of non-condensable gas of 0-5%. The regime map of pure steam condensation through multi-hole sparger is divided into steam chugging, separated bubble, aggregated bubble and escaping aggregated bubble. The bubbles behavior of synchronization in the same hole columns and desynchronized excitation between different hole columns can be found. The coalescence effect of mixture bubbles increases with water temperature and non-condensable gas content increasing. Pressure oscillation intensity of pure steam condensation first increases and then decreases with water temperature increasing, and increases with steam mass flux increasing. Pressure oscillation intensity of mixture gas condensation decreases with water temperature and non-condensable gas content increasing, which is significantly weaker than that of pure steam condensation. The oscillation dominant frequency decreases with the rise of water temperature and non-condensable gas content. The correlations for oscillation intensity and dominant frequency respectively are developed in pure steam and mixture gas condensation at low mass flux.

An Experimental and Simulation Analysis of Condensation in the Walk-in Closet Attached to Apartment Bathroom (욕실과 인접한 아파트 드레스룸의 결로 원인 분석)

  • Choi, Young-Woo;Kim, Sean Hay
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.89-94
    • /
    • 2017
  • Purpose: Condensation in walk-in closets attached to apartment bathroom has been known as an emerging issue that may threat occupants' comfort and health. Despite a number of design guidelines and enforcements to prevent condensation, condensation issues may still occur depending on various cases and scenarios. We aim to identify what condensation scenarios may lead to walk-in closet condensation and/or worse the existing condensation issues. Method: First we choose an actual walk-in closet of an apartment that suffers from sporadic condensation and resulting mold and mildew. Then we observe its relative humidity and temperature after the bathroom is used, in which excessive vapor is thought to be transported to the walk-in closet. We analyze Temperature Difference Ratio - a domestic indicator of condensation occurrence, and dew point temperature to compare it with surface temperature using 2D heat transfer simulation upon various condensation scenarios. Result: TDR of the test walk-in closet turns out be OK despite mold and mildew actually occurring. Hot water pipe installed in the floor would greatly reduce condensation. If hot water pipe in the upper floor, however, is not used, or hot water pipe of the closet is turned off during swing seasons, it is expected that condensations may still occur.

A Study on the Condensation Characteristics with Solar Radiation and Tilted Angles for Using Solar Water Purifying System (태양열 정수시스템 이용을 위한 일사량과 경사각에 따른 응축특성에 관한 연구)

  • Lee, Cheun-Gi;Kim, Byung-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.59-65
    • /
    • 2009
  • In this paper, to find effective way of the production of the distilled water with solar radiation, 4 different boxes of condensation systems were compared. The bottom size of boxes are identical but the angles of top collecting plates are different. During the solar radiation, condensation did not occur and the condensation start when solar radiation was decreased. The maximum condensation reached when the temperatures of the top and bottom parts are equal. The condensation was continued until sunrise with gradually reduced amount. When top plate angle was $45^{\circ}$, condensation was highest compared with the other angles.

Review of Steam Jet Condensation in a Water Pool (수조내 증기제트 응축현상 제고찰)

  • 김연식;송철화;박춘경
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.74-83
    • /
    • 2003
  • In the advanced nuclear power plants including APR1400, the SDVS (Safety Depressurization and Vent System) is adopted to increase the plant safety using the concept of feed-and-bleed operation. In the case of the TLOFW (Total Loss of Feedwater), the POSRV (Power Operated Safety Relief Value) located at the top of the pressurizer is expected to open due to the pressurization of the reactor coolant system and discharges steam and/or water mixture into the water pool, where the mixture is condensed. During the condensation of the mixture, thermal-hydraulic loads such as pressure and temperature variations are induced to the pool structure. For the pool structure design, such thermal-hydraulic aspects should be considered. Understanding the phenomena of the submerged steam jet condensation in a water pool is helpful for system designers to design proper pool structure, sparger, and supports etc. This paper reviews and evaluates the steam jet condensation in a water pool on the physical phenomena of the steam condensation including condensation regime map, heat transfer coefficient, steam plume, steam jet condensation load, and steam jet induced flow.

An Experimental Investigation of Direct Condensation of Steam Jet in Subcooled Water

  • Kim, Yeon-Sik;Chung, Moon-Ki;Park, Jee-Won;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.45-57
    • /
    • 1997
  • The direct contact condensation phenomenon, which occurs when steam is injected into the subcooled water, has been experimentally investigated. Two plume shapes in the stable condensation regime are found to be conical and ellipsoidal shapes depending on the steam mass flux and the liquid subcooling. Divergent plumes, however, are found when the subcooling is relatively small. The measured expansion ratio of the maximum plume diameter to the injector inner diameter ranges from 1.0 to 2.3. By means of fitting a large amount of measured data, an empirical correlation is obtained to predict the steam plume length as a function of a dimensionless steam mass flux and a driving potential for the condensation process. The average heat transfer coefficient of direct contact condensation has been found to be in the range 1.0~3.5 ㎿/$m^2$.$^{\circ}C$. Present results show that the magnitude of the average condensation heat transfer coefficient depends mainly on the steam mass fin By using dynamic pressure measurements and visual observations, six regimes of direct contact condensation have been identified on a condensation regime map, which are chugging, transition region from chugging to condensation oscillation, condensation oscillation, bubbling condensation oscillation, stable condensation, and interfacial oscillation condensation. The regime boundaries are quite clearly distinguishable except the boundaries of bubbling condensation oscillation and interfacial oscillation condensation.

  • PDF

Study on students과 concepts of evaporation and condensation in elementary school (초등학교 학생들의 증발과 응결 개념에 대한 연구)

  • 이용복;이성미
    • Journal of Korean Elementary Science Education
    • /
    • v.17 no.1
    • /
    • pp.89-103
    • /
    • 1998
  • We study that what kind of the concepts of evaporation and condensation students of elementary school have. The results are following. (1) The students have simple concepts of evaporation on natural circumstance. However, they don't understand about various effect on evaporation. (2) They don't know where the evaporized water is comming from. (3) They have experiences on observing condensation of wale. (70%), however don't know that the water is evaporized in the air. (4) They have more understanding about evaporation, more correct concepts on condensation in circulation of water.

  • PDF

Interfacial Condensation Heat Transfer for Countercurrent Steam-Water Stratified Flow in a Circular Pipe

  • Chu, In-Cheol;Chung, Moon-Ki;Yu, Seon-Oh;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.142-156
    • /
    • 2000
  • An experimental study of steam condensation on a subcooled thick water layer (0.018 ~0.032 m) in a countercurrent stratified flow has been performed using a nearly horizontal circular pipe. A total of 103 average interfacial condensation heat transfer coefficients were obtained and parametric effects of steam and water flow rates and the degree of subcooling on condensation heat transfer were examined. The measured local temperature and velocity distributions in the thick water layer revealed that there was a thermal stratification due to the lack of full turbulent thermal mixing in the lower region of the water layer Two empirical Nusselt number correlations, one in terms of average steam and water Reynolds numbers, and the water Prandtl number, and the other in terms of the Jakob number in place of the Prandtl number, which agree with most of the data within $\pm$ 25%, were developed based on the bulk flow properties. Comparisons of the present data with existing correlations showed that the present data were significantly lower than the values predicted by existing correlations.

  • PDF

An Experimental Study on the Condensation Characteristics with Solar Radiation and Tilted Angles

  • Kim, Byung-Chul;Koh, Young-Ha;Lee, Cheun-Gi
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.4
    • /
    • pp.123-128
    • /
    • 2009
  • In this paper, effective ways to produce distilled water with solar radiation was investigated. Four different boxes of condensation systems were compared. The bottoms of the boxes were identical, but the angles of the top collecting plates were different. During the solar radiation, condensation did not occur. Condensation started when solar radiation was decreased. The maximum condensation was found when the temperatures of the top and bottom parts were equal. The condensation was continued until sunrise with gradually reduced rate. When the collecting plate angle was $45^{\circ}$, condensation was the highest compared with other angles.

An Experimental Study on the Condensation Characteristics of Sea Water in the Tilted Box with Solar Radiation (태양열을 받는 경사진 육면체 내 해수의 응축특성에 관한 실험적 연구)

  • Kim, Beom-Han;Kim, Byung-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.27-33
    • /
    • 2011
  • To find effective way of the production of distilled water for drought and flood with solar radiation, three boxes were made same base each 1000mm ${\times} $1000mm and tops are 45 degree. Individual boxes contained the sea water, rain water and surface water were placed at the same location and same time. Condensation of each box has been compared. On clear day production of distilled water in the box with sea water was 36% and 32% less than boxes with rain water and surface water. The maximum condensation reached when the temperature of the top and bottom parts are equal. As concentration of sea water increased production of distilled water was decreased. In the box with sea water, the surface temperature was lower than 3cm below the surface. Optimum collector area for producing distilled water 2000ml of these three boxes were $3.75m^2$