• Title/Summary/Keyword: Water circulation rate

Search Result 223, Processing Time 0.025 seconds

Biodegradation Characteristics of Toluene in a Soil-Bioreactor (토양생물반응기내 Toluene의 분해 특성)

  • Kim, Chul Kyung
    • Clean Technology
    • /
    • v.8 no.4
    • /
    • pp.199-203
    • /
    • 2002
  • To investigate the optimal conditions for biodegradation of toluene by Pseudomonas fluorescens KCTC 1767 in a batch soil-bioreactor, the effects of rpm change from 60 to 180, and temperature change from $15^{\circ}C$ to $30^{\circ}C$ in a batch culture and the flow rate change from 55 mL/min to 85 mL/Min in soil-bioreactor on the biodegradation of toluene were studied. In a batch culture the optimal operating conditons were 60 rpm, and $30^{\circ}C$ at initial pH 7, In a soil-bioreactor the optimal flow rate was 55 mL/min in the flow rate of circulation. The lower flow rate of circulation may help to biodegrade toluene adsorped in soil and dissolved in underground water.

  • PDF

Optimization of Gas Mixing-circulation Plasma Process using Design of Experiments (실험계획법을 이용한 가스 혼합-순환식 플라즈마 공정의 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.359-368
    • /
    • 2014
  • The aim of our research was to apply experimental design methodology in the optimization of N, N-Dimethyl-4-nitrosoaniline (RNO, which is indictor of OH radical formation) degradation using gas mixing-circulation plasma process. The reaction was mathematically described as a function of four independent variables [voltage ($X_1$), gas flow rate ($X_2$), liquid flow rate ($X_3$) and time ($X_4$)] being modeled by the use of the central composite design (CCD). RNO removal efficiency was evaluated using a second-order polynomial multiple regression model. Analysis of variance (ANOVA) showed a high coefficient of determination ($R^2$) value of 0.9111, thus ensuring a satisfactory adjustment of the second-order polynomial multiple regression model with the experimental data. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the RNO removal efficiency and independent variables in a coded unit: RNO removal efficiency (%) = $77.71+10.04X_1+10.72X_2+1.78X_3+17.66X_4+5.91X_1X_2+3.64X_2X_3-8.72X_2X_4-7.80X{_1}^2-6.49X{_2}^2-5.67X{_4}^2$. Maximum RNO removal efficiency was predicted and experimentally validated. The optimum voltage, air flow rate, liquid flow rate and time were obtained for the highest desirability at 117.99 V, 4.88 L/min, 6.27 L/min and 24.65 min, respectively. Under optimal value of process parameters, high removal(> 97 %) was obtained for RNO.

The Performance Estimation of Pressure-Type Rapid Automatic Filter (압력식 급속 자동 여과장치의 여과성능 평가)

  • Kim, Deok-Jin;Ryu, Hea-Seong;Shin, Sang-Yoon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.607-612
    • /
    • 2006
  • A pressure-type rapid automatic filter of 2000mm diameter and 170 ton/h filtering capacity was fabricated. In case of no external impurity inflow, the turbidity removal efficiency on raw water was experimented and the numbers of impurities of each sizes were analyzed by particle counter. As the result of circulated filtering, the raw water of 40 NTU was filtered to 0.44 NTU and the numbers of impurities above $1{\mu}m$ were removed by approximately 95%. With the filtering efficiency experimented and the mathematical method, the turbidity change of circulation water were calculated according to the inflow rate of external impurity and water treatment method of blow-down or filtering. The cost of blow-down water was calculated from above results. And simple payback period for this filter is calculated as about one year. Nowadays, as the cost of water is continuously increasing and environment regulations will be more strict, the water quality control using this filter will be expected to satisfy the user requirement.

  • PDF

Development of Method for In-situ Micro-Scale Observation of Stress Corrosion Cracking in High-Temperature Primary Water Environment (원전 고온 1차수 환경에서 응력부식균열의 실시간 마이크로 스케일 관찰 방법 개발)

  • Jung-Ho Shin;Jong-Yeon Lee;Sung-Woo Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.265-272
    • /
    • 2023
  • The aim of this study was to develop a new in-situ observation method and instrument in micro-scale to investigate the mechanism of stress corrosion cracking (SCC) initiation of Ni-base alloys in a high temperature water environment of pressurized water reactors (PWRs). A laser confocal microscope (LCM), an autoclave with diamond window view port, and a slow strain-rate tester with primary water circulation loop system were components of the instrument. Diamond window, one of the core components of the instrument, was selected based on its optical, chemical, and mechanical properties. LCM was used to observe the specimen in micro-scale, considering the experimental condition of a high-temperature primary water environment. Using in-situ method and instrument, it is possible to observe oxidation and deformation of specimen surface in micro-scale through the diamond window in a high-temperature primary water in real-time. The in-situ method and instrument developed in this work can be utilized to investigate effects of various factors on SCC initiation in a high-temperature water environment.

Performance of Heat Recovery System using Evaporative Cooling (증발냉각을 이용한 배기열 회수장치의 성능에 관한 연구)

  • Yoo, Seong Yeon;Kim, Tae Ho;Kim, Myung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Evaporative cooling is a very effective way for exhaust heat recovery that uses both latent heat and sensible heat. This study investigated the performance of a heat recovery system using evaporative cooling. The experimental apparatus comprised a plastic heat exchanger, a water spray nozzle, an air blowing fan, a water circulation pump, and measuring sensors for the temperature, humidity, and flow rate. The effectiveness of the sensible heat recovery without evaporation was measured and compared with that of the total heat recovery with evaporation. The effectiveness of the sensible and total heat recoveries decreased as the air flow rate increased, and a much higher effectiveness was obtained with the counterflow arrangement in both cases. For total heat recovery, the effectiveness increased with the water flow rate, and the parallel flow arrangement was found to be more sensitive to the water flow rate than the counterflow arrangement.

A study on the estimation of river water intake using the operating time of the pumping station (양수장의 가동시간을 이용한 하천수 취수량 산정방안 연구)

  • Baek, Jongseok;Kim, Chiyoung;Cha, Jun-Ho;Song, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • Water management agencies under the Ministry of Environment produce and accumulate qualified basic data for major rivers. However, the integrated management of the river water has been weak since the artificial water circulation process, such as the intaking and drainage of agricultural water, has not been examined in the basin, which includes many agricultural land. In this study, a study was conducted on how the power usage method (operating time method) based on the running time can be applied and improved among indirect flow rate measurement methods used to investigate flow rates collected by the riverside for agricultural water purposes, and thus the resultant data of high reliability can be obtained at low cost. The operation time method is suitable for small-scale water pumping stations where it is difficult to secure real-time power supply data. The reliability of the data was verified through the correlation analysis with the actual flow rate, and it was found that the flow rate calculated by the operation time method reflecting the level of the stream to which the inlet of the pumping station is connected can be reasonably matched with the actual flow rate. In addition, it was confirmed that the investment cost at the time of initial installation of the facility was highly efficient by generating qualified flow data at low cost through comparison with direct flow rate measurement methods. If flow data is secured by applying the operation time method to large and small water farms located along the riverside, it is expected that more quantitative and integrated stream water management will be possible.

The Cooling Effect of Fog Cooling System as Affected by Air Exchange Rate in Natural Ventilation Greenhouse (자연환기 온실의 환기회수에 따른 포그냉방시스템의 냉방효과)

  • 김문기;김기성;권혁진
    • Journal of Bio-Environment Control
    • /
    • v.10 no.1
    • /
    • pp.10-14
    • /
    • 2001
  • The cooling effect of a fog cooling system has a close relationship to air flow and relative humidity in the greenhouse. From the VETH chart for cooling design, a cooling efficiency can be improved by means of increasing the air exchange rate and the amount of sprayed water. In the no shading experimental greenhouse by time control, when average air exchange rate was 0.77 times.min$^{-1}$ and spray water amount was 2,009g, inside temperature of the greenhouse was 31$^{\circ}C$ that was almost close to outside temperature and cooling efficiency was 82%. When average air exchange rate was close to temperature of the greenhouse that was no cooling and 70% shading greenhouse environment. When average air exchange rate was 2.59times.min$^{-1}$ , spray water amount was 2,009g and shading rate was 70%, inside relative humidity of the greenhouse was increased was 2,009 g and shading rate was 70%, inside relative humidity of the greenhouse was increased, but temperature was not decreased. When average air exchange rate was 2.33 times.min$^{-1}$ and spray water amount was 2,009g, inside temperature was 31.4 and at that time maximum wind speed at the air inlet of greenhouse was 1.9m.s$^{-1}$ . Since time controller sprayed amount of constant water at a given interval, some of sprayed water remained not to be evaporated, which increased relative humidity and decreased cooling efficiency. Because the shading screen prevented air flow in the greenhouse, it also caused the evaporation efficiency to be decreased. In order to increase cooling efficiency, it was necessary to study on controling by relative humidity and air circulation in the greenhouse.

  • PDF

Distribution of Vital, Environmental Components and Nutrients Migration Over Sedimentary Water Layers

  • Khirul, Md Akhte;Kim, Beom-Geun;Cho, Daechul;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.30 no.3
    • /
    • pp.195-206
    • /
    • 2021
  • Contaminated marine sediment is a secondary pollution source in the coastal areas, which can result in increased nutrients concentrations in the overlying water. We analyzed the nutrients release characteristics into overlying water from sediments and the interaction among benthic circulation of nitrogen, phosphorus, iron, and sulfur were investigated in a preset sediment/water column. Profiles of pH, ORP, sulfur, iron, nitrogen, phosphorus pools were determined in the sediment and three different layers of overlying water. Variety types of sulfur in the sediments plays a significant role on nutrients transfer into overlying water. Dissimilatory nitrate reduction and various sulfur species interaction are predominantly embodied by the enhancing effects of sulfide on nitrogen reduction. Contaminant sediment take on high organic matter, which is decomposed by bacteria, as a result promote bacterial sulfate reduction and generate sulfide in the sediment. The sulfur and iron interactions had also influence on phosphorus cycling and released from sediment into overlying water may ensue over the dissolution of ferric iron intercede by iron-reducing bacteria. The nutrients release rate was calculated followed by release rate equation. The results showed that the sediments released large-scale quantity of ammonium nitrogen and phosphate, which are main inner source of overlying water pollution. A mechanical migration of key nutrients such as ammonia and inorganic phosphate was depicted numerically with Fick's diffusion law, which showed a fair agreement to most of the experimental data.

Estimation of irrigation return flow from paddy fields on agricultural watersheds (농업유역의 논 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;An, Hyun-Uk;Kim, Jonggun;Shin, Yongchul;Do, Jong-Won;Lee, Kwang-Ya
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Irrigation water supplied to the paddy field is consumed in the amount of evapotranspiration, underground infiltration, and natural and artificial drainage from the paddy field. Irrigation return flow is defined as the excess of irrigation water that is not consumed by evapotranspiration and crop, and which returns to an aquifer by infiltration or drainage. The research on estimating the return flow play an important part in water circulation management of agricultural watershed. However, the return flow rate calculations are needs because the result of calculating return flow is different depending on irrigation channel water loss, analysis methods, and local characteristics. In this study, the irrigation return flow rate of agricultural watershed was estimated using the monitoring and SWMM (Storm Water Management Model) modeling from 2017 to 2020 for the Heungeop reservoir located in Wonju, Gangwon-do. SWMM modeling was performed by weather data and observation data, water of supply and drainage were estimated as the result of SWMM model analysis. The applicability of the SWMM model was verified using RMSE and R-square values. The result of analysis from 2017 to 2020, the average annual quick return flow rate was 53.1%. Based on these results, the analysis of water circulation characteristics can perform, it can be provided as basic data for integrated water management.

Critical Heat Flux and Flow Pattern for Water Flow in Annular Geometry

  • Park, Jae-Wook;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.224-229
    • /
    • 1996
  • An experimental study on critical heat flux (CHF) and two-phase flow visualization has been performed for water flow in internally-heated, vertical, concentric annuli under near atmospheric pressure. Tests have been done under stable forced- circulation, upward and downward flow conditions with three test sections of relatively large gap widths (heated length = 0.6 m. inner diameter = 19 mm, outer diameter = 29, 35 and 51 mm). The outer wall of the test section was made up of the transparent Pyrex tube to allow the observation of flow patterns near the CHF occurrence. The CHF mechanism was changed in the order of flooding, chum-to-annular flow transition, and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. Observed parametric trends are consistent with the previous understanding except that the CHF for downward flow is considerably lower than that for upward flow.

  • PDF