• 제목/요약/키워드: Water channel work

검색결과 91건 처리시간 0.022초

고분자전해질형 연료전지의 단순 채널 리브 형상에서의 물방울 가시화 연구 (Visualization of Water Droplets in the Simple Flow Channel and Rib Geometry for Polymer Electrolyte Membrane Fuel Cells (PEMFCs))

  • 최민욱;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.386-392
    • /
    • 2014
  • The effective water management in a polymer electrolyte membrane fuel cell (PEMFC) is one of the key strategies for improving cell performance and durability. In this work, an ex situ measurement was carried out to understand the water droplet behavior on the surface of gas diffusion layer (GDL) as a fundamental study for establishing novel water management. For that purpose, simplified cell including one rib and two flow channels was designed and fabricated. Using this ex situ device, the water droplet emergence through the GDL of the PEMFC was emulated to understand liquid water transport through the porous diffusion medium. Through the visualization experiment, the emergence and growth of water droplets at the channel/GDL interface are mainly observed with the surface characteristics of GDL (SGL 10BA, 24BA) and rib when the liquid water passes through the GDL and is expelled to the flow channel. It is expected that the results obtained from this study can contribute to the better understanding on the water droplet behavior (emergence and removal) in the flow channels of PEMFC.

북한산국립공원 계곡 내 인공구조물에 대한 경관선호 분석 - 바닥막이, 기슭막이, 낙차공을 중심으로 - (Analysis of Scenery Preference of the Artificial Structure in Valley within Bughansan National Park - With a Special Reference on Stream Grade-Stabilization Structure, Revetment and Drop fall Structure -)

  • 박재현
    • 한국환경복원기술학회지
    • /
    • 제8권2호
    • /
    • pp.21-32
    • /
    • 2005
  • Questionnaire survey from 101 visitors and 77 specialists was carried out to establish the management plan on landscapes of the artificial structure constructed in valley within Bughansan National Park. When comparison was made between ground sill work structure and valley landscape, visitor group responded to the highest scores in valley landscape after planting of vine species in the bottom of the constructure, while specialist group responded to valley landscape after the removal of the constructure. When it made a comparison between revetment work constructure and valley landscape, visitor group responded to highest scores in valley landscape after planting of vine species in the top of the constructure, while specialist group responded to valley landscape after replacing concrete revetment by stone revetment constructure. When it made a comparison between fall work constructure and valley landscape, both groups responded to the highest scores in valley landscape after the removal of the constructure. According to the valley landscape analysis, artificial constructures built in water channel should be matched to adjacent landscape with the removal of concrete constructure. The slope of water channel should be considered to build fall work constructure.

플러딩 조건 하에서의 고분자전해질형 연료전지 GDL 표면과 공기극 유로 채널에서의 물방울 유동 특성 고찰 (Investigation of Water Droplet Behaviour on GDL Surface and in the Air Flow Channel of a PEM Fuel Cell under Flooding Conditions)

  • 김한상;민경덕
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.476-483
    • /
    • 2012
  • Proper water management is crucial for the efficient operation of polymer electrolyte membrane (PEM) fuel cell. Especially, for automotive applications, A novel water management that can avoid both membrane dry-out and flooding is a very important task to achieve good performance and efficiency of PEM fuel cells. The aim of this study is to investigate the liquid water behavior on the gas diffusion layer (GDL) surface and in the cathode flow channel of a PEM unit fuel cell under flooding conditions. For this purpose, a transparent unit fuel cell is devised and fabricated by modifying the conventional PEM fuel cell design. The results of water droplet behavior under flooding conditions are mainly presented. The water distributions in the cathode flow channels with cell operating voltage are also compared and analyzed. Through this work, it is expected that the data obtained from this fundamental study can be effectively used to establish the basic water management strategy in terms of water removal from the flow channels in a PEM fuel cell stack.

해양공학용 소형 회류수조 설계 및 성능분석 (Design and Performance Analysis of a Small Circulating Water Channel for Ocean Engineering)

  • 임영배;정우철;박찬원;홍기섭
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.198-202
    • /
    • 2003
  • A small circulating water channel (CWC) for experiments ocean engineering is designed and made through the co-work of a company, MESTEC, and a college, Inha Technical Research Institute. General function of the elements of CWC are explained. The velocities in the test section are measured and analysed to estimate the performance of the CWC. The result of the velocity distribution is acceptable for experiments of ocean engineering.

  • PDF

GDL을 고려한 고분자전해질형 연료전지 모사 단위 유로 채널에서의 물방울 유동 특성에 대한 실험적인 고찰 (Experimental Investigation of the Water Droplet Dynamics inside the Simulated PEMFC Single Flow Channel with GDL)

  • 김한상;지용휘;인지헌;안지용
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.76-83
    • /
    • 2013
  • Polymer electrolyte membrane fuel cells (PEMFCs) are regarded as a promising alternative to replace the existing automotive power sources. To get high performance and long-term durability for PEMFC systems, novel water management is essential. To this end, a comprehensive understanding of dynamics of the liquid water droplets within an operating PEMFC plays an important role. In this work, direct visualization of dynamic behaviors of the water droplet in the ex situ unit flow channel of a PEMFC including gas diffusion layer (GDL) is carried out as one of the fundamental studies for novel water management. Water droplet dynamics such as the movement and growth of liquid water droplets are mainly presented. Effects of GDL characteristics and inlet air flow rate on the water droplet transport and its removal from the flow channel are also discussed. The data obtained in this study can contribute to build up the fundamental operating strategy including balanced water removal capacity for automotive PEMFC systems.

MIMO Channel Capacity and Configuration Selection for Switched Parasitic Antennas

  • Pal, Paramvir Kaur;Sherratt, Robert Simon
    • ETRI Journal
    • /
    • 제40권2호
    • /
    • pp.197-206
    • /
    • 2018
  • Multiple-input multiple-output (MIMO) systems offer significant enhancements in terms of their data rate and channel capacity compared to traditional systems. However, correlation degrades the system performance and imposes practical limits on the number of antennas that can be incorporated into portable wireless devices. The use of switched parasitic antennas (SPAs) is a possible solution, especially where it is difficult to obtain sufficient signal decorrelation by conventional means. The covariance matrix represents the correlation present in the propagation channel, and has significant impact on the MIMO channel capacity. The results of this work demonstrate a significant improvement in the MIMO channel capacity by using SPA with the knowledge of the covariance matrix for all pattern configurations. By employing the "water-pouring algorithm" to modify the covariance matrix, the channel capacity is significantly improved compared to traditional systems, which spread transmit power uniformly across all the antennas. A condition number is also proposed as a selection metric to select the optimal pattern configuration for MIMO-SPAs.

Metal foam을 사용한 고분자 전해질 연료전지 성능 연구 (A Study on Performance of Polymer Electrolyte Membrane Fuel Cell Using Metal Foam)

  • 김묘은;김창수;손영준
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.554-559
    • /
    • 2015
  • Single cell of PEMFC (polymer electrolyte membrane fuel cell) is composed of bipolar plates, gasket, GDL and the MEA. Bipolar plate's function is the collecting electricity, helping oxygen/hydrogen gas diffuse evenly and draining the water and heat. In this work, we have conducted experiments to low contact resistance and improve the performance of a $25cm^2$ single cell by using metal forms. We have following experimental cases: 1) Conventional graphite serpentine channel bipolar plate; 2) Channel-less bipolar plate with nickel(Ni) based metal foam which coated by various materials. We focused the difference in contact resistance and performance of the single cell with metal foam depending on various coating materials. The experimental results show the similar performance of single cells between with serpentine channel bipolar plates and with channel-less bipolar plate using metal foams. In addition, single cell with metal foam shows potential to higher performance than conventional channel.

Theory and Practices of Water Pollution Control by Wetland - a Case Study of Reed Wetland in Baiyangdian Lake

  • Li, Guibao;Zhou, Huaidong;Liu, Fang;Wang, Dianwu
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.72-76
    • /
    • 2004
  • Wetland is an important eco-system on the earth and can effectively control agricultural non-point source pollution. Reed is a typical wetland plant for land/inland water ecotone in north China. The studies indicated that reed had a underground rooted-stem, which formed a 'high speeded-connecting vessels' i.e. reed root channel (RRC) in Baiyangdian lake of Hebei province. It spread predominantly along horizontal direction underground and are mainly distributed at 18-75 cm. The results of field work from healthy reed-wetland (HRW) and regarded reed-wetland (RRW) showed that the reed, averagely, in HRW is 4.2 m height, 1 cm diameter, 65/m2 density; in RRW is 2.4 m height, 3 mm diameter, 86/m2 density. These results indicated the regradation of the function of RRC in RRW. The results of laboratory work of sewage purification from reed soil column (RSC) $(0\~100cm)$ and wheat soil column (WSC) showed that the efficiency of purification to sewage, in RSC, is high than in WSC, especially for phosphorus. The efficiency of purification, in RSC, is $92.6\%$ for total phosphorus, $43.5\%$ for total nitrogen, $54.1\%$ fur COD, respectively; in WSC, is $86.0\%$ for total phosphorus, $241.3\%$ for total nitrogen, $29.8\%$ for COD, respectively.

  • PDF

황원어(黃元御)의 육경(六經) 기화학설(氣化學說)에 관한 연구(硏究) (Research on the Six Channel Qi Metabolism Theory of Huangyuanyu)

  • 이상협
    • 대한한의학원전학회지
    • /
    • 제35권1호
    • /
    • pp.59-79
    • /
    • 2022
  • Objectives : Huangyuanyu's interpretation of the six channel diseases of the Shanghanlun were examined based on contents on the six channel qi metabolism theory in his works, Shanghanxuanjie, Shanghanshuoyi, and Sishengxinyuan. Methods : Contents related to the six channel qi metabolism theory in the Shanghanxuanjie, Shanghanshuoyi, and Sishengxinyuan were extracted and examined to identify a fundamental principle from the perspective of the six channel qi metabolism theory. Characteristics of each of the six channel diseases were organized. Results : Huang's understanding of the six channel diseases in the Shanghanlun could be summarized by the six channel. Its features could be explained as following. First, in examining the principles of the controlling qi[司氣] and constitutionally influenced transformation[從化], the rise and fall of the body's yang qi was emphasized. Second, center qi[中氣] was considered important, the taiyin Spleen being the key to life and death. Third, the pathology of 'earth dampness/water cold/wood stagnation' due to weakness of the center qi was suggested. Fourth, the principle of boosting-yang-suppressing-yin was emphasized in treatment, with criticism of the nurturing-yin-extinguishing-fire method. Conclusions : In understanding the six channel diseases in the Shanghanlun, Huangyuanyu focused on the body's yang qi and center qi based on key theories such as the 'five circuits and six qi' and 'six channel qi metabolism' theories. His perspective could be helpful in understanding Zhangzhongjing's work more comprehensively.

Quantitative observation of co-current stratified two-phase flow in a horizontal rectangular channel

  • Lee, Seungtae;Euh, Dong-Jin;Kim, Seok;Song, Chul-Hwa
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.267-283
    • /
    • 2015
  • The main objective of this study is to investigate experimentally the two-phase flow characteristics in terms of the direct contact condensation of a steam-water stratified flow in a horizontal rectangular channel. Experiments were performed for both air-water and steam-water flows with a cocurrent flow configuration. This work presents the local temperature and velocity distributions in a water layer as well as the interfacial characteristics of both condensing and noncondensing fluid flows. The gas superficial velocity varied from 1.2 m/s to 2.0 m/s for air and from 1.2 m/s to 2.8 m/s for steam under a fixed inlet water superficial velocity of 0.025 m/s. Some advanced measurement methods have been applied to measure the local characteristics of the water layer thickness, temperature, and velocity fields in a horizontal stratified flow. The instantaneous velocity and temperature fields inside the water layer were measured using laser-induced fluorescence and particle image velocimetry, respectively. In addition, the water layer thickness was measured through an ultrasonic method.