DOI QR코드

DOI QR Code

MIMO Channel Capacity and Configuration Selection for Switched Parasitic Antennas

  • Received : 2017.06.06
  • Accepted : 2018.01.18
  • Published : 2018.04.01

Abstract

Multiple-input multiple-output (MIMO) systems offer significant enhancements in terms of their data rate and channel capacity compared to traditional systems. However, correlation degrades the system performance and imposes practical limits on the number of antennas that can be incorporated into portable wireless devices. The use of switched parasitic antennas (SPAs) is a possible solution, especially where it is difficult to obtain sufficient signal decorrelation by conventional means. The covariance matrix represents the correlation present in the propagation channel, and has significant impact on the MIMO channel capacity. The results of this work demonstrate a significant improvement in the MIMO channel capacity by using SPA with the knowledge of the covariance matrix for all pattern configurations. By employing the "water-pouring algorithm" to modify the covariance matrix, the channel capacity is significantly improved compared to traditional systems, which spread transmit power uniformly across all the antennas. A condition number is also proposed as a selection metric to select the optimal pattern configuration for MIMO-SPAs.

Keywords

References

  1. E. Telatar, "Capacity of Multi-antenna Gaussian Channel," Trans. Emerg. Telecommun. Technol., vol. 10, no. 6, Nov. 1999, pp. 585-595. https://doi.org/10.1002/ett.4460100604
  2. G.J. Foschini and M.J. Gans, "On Limits of Wireless Communications in a Fading Environment When Using Multiple Antennas," Wireless Personal Commun., vol. 6, no. 3, Mar. 1998, pp. 311-335. https://doi.org/10.1023/A:1008889222784
  3. R. Vaughan, "Switched Parasitic Elements for Antenna Diversity," IEEE Trans. Antennas Propag., vol. 47, no. 2, Feb. 1999, pp. 399-405. https://doi.org/10.1109/8.761082
  4. M. Wennstrom and T. Svantesson, "An Antenna Solution for MIMO Channels: The Switched Parasitic Antenna," IEEE Int. Symp. Personal, Indoor Mobile Radio Commun., San Diego, CA, USA, Sept. 2001, pp. 159-163.
  5. A. Kalis, A.G. Kanatas, and C.B. Papadias, "A Novel Approach to MIMO Transmission Using a Single RF Front End," IEEE J. Sel. Areas Commun., vol. 26, no. 6, Aug. 2008, pp. 972-980. https://doi.org/10.1109/JSAC.2008.080813
  6. A. Kalis, A.G. Kanatas, and C.B. Papadias, Parasitic Antenna Arrays for Wireless MIMO Systems, New York, USA: Springer, 2014.
  7. M.D. Migliore, D. Pinchera, and F. Schettino, "Improving Channel Capacity Using Adaptive MIMO Antennas," IEEE Trans. Antennas Propag., vol. 54, no. 11, Nov. 2006, pp. 3481-3489. https://doi.org/10.1109/TAP.2007.884302
  8. O.N. Alrabadi, C. Divarathne, P. Tragas, A. Kalis, N. Marchetti, C.B. Papadias, and R. Prasad, "Spatial Multiplexing with a Single Radio: Proof-of-Concept Experiments in an Indoor Environment with a 2.6 GHz Prototype," IEEE Commun. Lett., vol. 15, no. 2, Feb. 2011, pp. 178-180. https://doi.org/10.1109/LCOMM.2011.121310.102119
  9. O.N. Alrabadi, J. Perruisseau-Carrier, and A. Kalis, "MIMO Transmission Using a Single RF Source: Theory and Antenna Design," IEEE Trans. Antennas Propag., vol. 60, no. 2, Feb. 2012, pp. 654-664. https://doi.org/10.1109/TAP.2011.2173429
  10. D. Gwak, I. Sohn, and S.H. Lee, "Analysis of Single-RF MIMO Receiver with Beam-Switching Antenna," ETRI J., vol. 37, no. 4, Aug. 2015, pp. 647-656. https://doi.org/10.4218/etrij.15.0114.0618
  11. R. Bains and R. Muller, "Using Parasitic Elements for Implementing the Rotating Antenna for MIMO Receivers," IEEE Trans. Wirel. Commun., vol. 7, no. 11, Nov. 2008, pp. 4522-4533. https://doi.org/10.1109/T-WC.2008.060808
  12. M. DiZazzo, M.D. Migliore, F. Schettino, V. Patriarca, and D. Pinchera, "A Novel Parasitic-MIMO Antenna," IEEE Antennas Propag. Soc. Inter. Symp., Albuquerque, NM, USA, July 2006, pp. 4447-4450.
  13. M. Yoshida, K. Sakaguchi, and K. Araki, "Single Front- End MIMO Architecture with Parasitic Antenna Elements," IEICE Trans. Commun., vol. E95-B, no. 3, Mar. 2012, pp. 882-888.
  14. M. Vu and A. Paulraj, "MIMO Wireless Linear Precoding," IEEE Signal Process. Mag., vol. 24, no. 5, Sept. 2007, pp. 86-105. https://doi.org/10.1109/MSP.2007.904811
  15. D. Sacristan-Murga and A. Pascual-Iserte, "Differential Feedback of MIMO Channel Gram Matrices Based on Geodesic Curves," IEEE Trans. Wirel. Commun., vol. 9, no. 12, Dec. 2010, pp. 3714-3727. https://doi.org/10.1109/TWC.2010.102210.091686
  16. D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge, UK: Cambridge University Press, 2005.
  17. J. Zik, Maximizing LTE Performance through MIMO Optimization, Germantown, PA, USA: PCTEL Inc., Apr. 2011.
  18. M. Zia, T. Kiani, H. Mahmood, T. Shah, and N.A. Saqib, "Bandwidth-Efficient Selective Retransmission for MIMO- OFDM Systems," ETRI J., vol. 37, no. 1, Feb. 2015, pp. 66-76. https://doi.org/10.4218/etrij.15.0114.0050
  19. R.W. Heath and A.J. Paulraj, "Switching Between Diversity and Multiplexing in MIMO Systems," IEEE Trans. Commun., vol. 53, no. 6, 2005, pp. 962-968. https://doi.org/10.1109/TCOMM.2005.849774
  20. D. Piazza, J. Kountouriotis, M. D'Amico, and K.R. Dandekar, "A Technique for Antenna Configuration Selection for Reconfigurable Circular Patch Arrays," IEEE Trans. Antennas Propag., vol. 8, no. 3, Mar. 2009, pp. 1456-1467.
  21. A. Forenza, A. Pandharipande, H. Kim, and R.W. Heath, "Adaptive MIMO Transmission Scheme: Exploiting the Spatial Selectivity of Wireless Channels," IEEE Veh. Technol. Conf., Stockholm, Sweden, May 30-June 1, 2005, pp. 3188-3192.
  22. D. Pinchera and M.D. Migliore, "Effectively Exploiting Parasitic Arrays for Secret Key Sharing," IEEE Trans. Veh. Tech., vol. 65, no. 1, Jan. 2016, pp. 123-131. https://doi.org/10.1109/TVT.2015.2391294
  23. R.W. Heath and D.J. Love, "Multimode Antenna Selection for Spatial Multiplexing Systems with Linear Receivers," IEEE Trans. Signal Process., vol. 53, no. 8, Aug. 2005, pp. 3042-3056. https://doi.org/10.1109/TSP.2005.851109
  24. J.V. Cuan-Cortes, C. Vargas-Rosales, and D. Munoz-Rodriguez, "MIMO Channel Capacity Using Antenna Selection and Water Pouring," EURASIP J. Wirel. Commun. Netw., vol. 2014, Dec. 2014, pp. 1-10. https://doi.org/10.1186/1687-1499-2014-1
  25. C.A. Balanis, Antenna Theory, New York, USA: Wiley, 2005.
  26. C.E. Shannon, "A Mathematical Theory of Communication," Bell Syst. Tech. J., vol. 27, no. 3, 1948, pp. 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  27. S.J. Orfanidis, "Electromagnetic Waves and Antennas," Rutgers University, 2002, pp. 702-733, Accessed 2017. http://www.ece.rutgers.edu/-orfanidi/ewa/
  28. M.R.O. Mofolo, A.A. Lysko, T.O. Olwal, and W.A. Clarke, "Beam Steering for Circular Switched Parasitic Arrays Using a Combinational Approach," IEEE AFRICON, Livingstone, Zambia, Sept. 13-15, 2011, pp. 1-6.
  29. K. Gyoda and T. Ohira, "Design of Electronically Steerable Passive Array Radiator (ESPAR) Antennas," IEEE Antennas Propag. Soc. Int. Symp., Salt Lake City, UT, USA, July 16-21, 2000, pp. 922-925.

Cited by

  1. λ/64-spaced compact ESPAR antenna via analog RF switches for a single RF chain MIMO system vol.41, pp.4, 2018, https://doi.org/10.4218/etrij.2018-0374
  2. Passive parasitic UWB antenna capable of switched beam-forming in the WLAN frequency band using an optimal reactance load algorithm vol.41, pp.6, 2018, https://doi.org/10.4218/etrij.2018-0393
  3. Enhancing performance in a LOS MIMO communication using a passive repeater vol.2140, pp.1, 2018, https://doi.org/10.1088/1742-6596/2140/1/012013