• Title/Summary/Keyword: Water adsorption

Search Result 1,592, Processing Time 0.022 seconds

Chloride Threshold Value for Steel Corrosion considering Chemical Properties of Concrete (콘크리트의 화학적 특성을 고려한 철근 부식 임계 염소이온 농도)

  • Song, Ha-Won;Jung, Min-Sun;Ann, Ki Yong;Lee, Chang-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.75-84
    • /
    • 2009
  • The present study assesses the chloride threshold level for corrosion of steel in concrete by examining the properties of four different binders used for blended concrete in terms of chloride binding, buffering of cement matrix to a pH fall and the corrosion behaviour. As binders, ordinary Portland cement (OPC), 30% pulverised fuel ash (PFA), 60% ground granulated blast furnace slag (GGBS) and 10% silica fume (SF) were used in a concrete mix. Testing for chloride binding was carried out using the water extraction method, the buffering of cement matrix was assessed by measuring the resistance to an artificial acidification of nitric acid, and the corrosion rate of steel in mortar with chlorides in cast was measured at 28 days using an anodic polarisation technique. Results show that the chloride binding capacity was much affected by $C_{3}A$ content and physical adsorption, and its order was 60% GGBS>30% PFA>OPC>10% SF. The buffering of cement matrix to a pH fall was varied with binder type and given values of the pH. From the result of corrosion test, it was found that the chloride threshold ranged 1.03, 0.65, 0.45 and 0.98% by weight of cement for OPC, 30% PFA, 60% GGBS and 10% SF respectively, assuming that corrosion starts at the corrosion rate of $0.1-0.2{\mu}A/cm^{2}$. The mole ratio of [$Cl^{-}$]:[$H^{+}$], as a new presentation of the chloride threshold, indicated the value of 0.008-0.009, irrespective of binder, which would be indicative of the inhibitive characteristic of binder.

Analysis of CO2 Emission and Effective CO2 Capture Technology in the Hydrogen Production Process (수소생산 공정에서의 CO2 배출처 및 유효포집기술 분석)

  • Kyung Taek Woo;Bonggyu Kim;Youngseok So;Munseok Baek;Seoungsoo Park;Hyejin Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.77-83
    • /
    • 2023
  • Energy consumption is increased by rapid industrialization. As a result, climate change is accelerating due to the increase in CO2 concentration in the atmosphere. Therefore, a shift in the energy paradigm is required. Hydrogen is in the spotlight as a part of that. Currently 95% of hydrogen is fossil fuel-based reforming hydrogen which is accompanied by CO2 emissions. This is called gray hydrogen, if the CO2 is captured and emission of CO2 is reduced, it can be converted into blue hydrogen. There are 3 technologies to capture CO2: absorption, adsorption and membrane technology. In order to select CO2 capture technology, the analysis of the exhaust gas should be carried out. The concentration of CO2 in the flue gas from the hydrogen production process is higher than 20%if water is removed as well as the emission scale is classified as small and medium. So, the application of the membrane technology is more advantageous than the absorption. In addition, if LNG cold energy can be used for low temperature CO2 capture system, the CO2/N2 selectivity of the membrane is higher than room temperature CO2 capture and enabling an efficient CO2 capture process. In this study, we will analyze the flue gas from hydrogen production process and discuss suitable CO2 capture technology for it.

Adsorption and Metabolism of [14C]butachlor in Rice Plants Under Pot Cultivation ([14C]Butachlor의 벼에 대한 흡수 및 대사)

  • Kim, Ju-Hye;Kim, Jong-Hwan;Kim, Dae-Wook;Lee, Bong-Jae;Kim, Chansub;Ihm, Yangbin;Seo, Jong-Su
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.174-184
    • /
    • 2015
  • In the present study, the metabolism of [$^{14}C$]butachlor was investigated in rice plant according to the OECD test guideline No. 501. [$^{14}C$]Butachlor was treated as granule to paddy water by application of 1.5 kg ingredient (a.i.)/ha at the 3~4 leave stage of rice plant. At 85 days after treatment (DAT), samples of panicle, foliage, and roots were taken for radioactivity analysis. Upon harvest at 126 DAT, rice plants were separated into brown rice, husk, straw, and root parts. Amounts of total radioactivity absorbed by rice plant ranged from 8.6 to 9.8% of applied radioactivity (AR). Total radioactive residues (TRRs) of rice plant at 126 DAT was the highest as 4.0421 mg/kg (7.3% AR) in the straw followed by 1.4595 mg/kg (2.4% AR) in the root, 0.7257 mg/kg (0.1% AR) in the husk. The lowest level recording 0.1020 mg/kg (0.1% AR) was found in brown rice. Each part was extracted with various solvents and solvent/water mixtures. Greater than 70% of TRRs was readily extractable from foliage, panicle, husk and straw. Only 34.0% of the brown rice and 43% of root based on TRRs were extractable showing that the residues were completely assimilated in the plant tissue. The level of non-extractable radioactivity was ranged from 26.2 to 66.0% of TRRs. From this study, five tentative major metabolites (M1, M2, M3, M4 and M5) were observed in rice extracts. Among the metabolites, 2,6-diethylaniline assigned as M4 was identified in rice plant by comparing to retention time of reference standard. Un-metabolized butachlor was not detected in any fractions. In soil extracts, N-(butoxymethyl)-N-(2,6-diethyl phenyl)acetamide, 2,6-diethylaniline, M2, M3 and M5 were observed. And the concentration of butachlor was low level (ca. 0.03 mg/kg).

Distribution and Characteristics of Organophosphorous pesticides in Shingu Reservoir, Korea (신구저수지의 유기인계 농약 분포와 특성)

  • Hong, Seong-Jin;Choi, Jin-Young;Yang, Dong-Beom;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.318-326
    • /
    • 2007
  • Characteristics of organophoshhorus pesticides (OPs) distribution were investigated in Shingu Reservoir, as a shallow eutrophic agriculture reservoir in Korea. In August 2006, IBP, DDVP and dyfonate were detected in the water column of Singu Reservoir, ranging from 1340.7 to 16030.1 ng $L^{-1}$, 58.7 to 127.6 ng $L^{-1}$ and N.D. to 20.3 ng $L^{-1}$, respectively, However, in September 2006, mevinfos, ethoprofos, phorate, chlorfenvinfos, and methidathion were also found in addition to IBP (202.5${\sim}$213.2 ng $L^{-1}$), DDVP (100.7${\sim}$340.6 ng $L^{-1}$) and dyfonate (N.D.${\sim}$25.0 ng $L^{-1})$. Maximum concentrations of OPs were observed at the middle depth in August, which might be related with photo-oxidation. On the other hand, IBP and DDVP among the OPs were detected in suspended particles, suggesting the relatively active adsorption reactivity. The composition of OPs varied temporally on account of the influence of inflow water from its surrounding areas. In the present study, the observed OPs concentrations seem to be not acute toBic levels to aquatic organisms in Shingu Reservoir, considering the standard monitoring levels of U.S. Environmental Protection Agency and Japan Ministry of Environment.

Physicochemical Properties of the Synthetic Hectorite (합성 헥토라이트의 물리화학적 특성)

  • Chae, Soo-Chun;Jang, Young-Nam;Bae, In-Kook;Jang, Hee-Dong;Ryou, Kyung-Won;Chae, Young-Bae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.313-320
    • /
    • 2008
  • Hectorite was synthesized under hydrothermal conditions and its physicochemical properties have been investigated in terms of temperature, pH, and organic agent to observe the change of doll basal spacing. The IR, CEC, MB, swelling volume and specific surface area of the hectorite were measured for the characterization. The solid/liquid ratio of hectorite to distilled water before mixing with other materials was also determined for its use as a multi-functional material. The $d_{001}$ basal spacing decreased from $12.63\;\AA$ at room temperature to $10.19\;\AA$ at $650^{\circ}C$ in the heating tests. As the pH of hectorite slurry increased. the $d_{001}$ basal spacing decreased. reaching the lowest value of $13.33\;\AA$ at pH 7 and afterward, increased. All the fool basal spacings of the hectorite increased when it was intercalated with the following solvents: $12.86\;\AA$ in diethyl ether, $13.31\;\AA$ in acetonitrile. $13.59\;\AA$ in methanol, $14.05\;\AA$ in ethanol, $15.69\;\AA$ in acetone, and $17.42\;\AA$ in ethylene glycol. Our IR analysis results were in good agreement with those of other researchers. The CEC, MB, swelling volume and specific surface area of hectorite were determined to be 105 cmol/kg, 80 cmol/kg, $68\sim74ml/2g$ and $213m^{2}/g$, respectively. Also, the hectorite to distilled water ratio of 2 to 100 was found to be most favorable for mixing with other materials such as the solvents mentioned above.

Heterogeneous Oxidation of Liquid-phase TCE over $CoO_x/TiO_2$ Catalysts (액상 TCE 제거반응을 위한 $CoO_x/TiO_2$ 촉매)

  • Kim, Moon-Hyeon;Choo, Kwang-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.253-261
    • /
    • 2005
  • Catalytic wet oxidation of ppm levels of trichloroethylene (TCE) in water has been conducted using $TiO_2$-supported cobalt oxides at a given temperature and weight hourly space velocity. 5% $CoO_x/TiO_2$ might be the most promising catalyst for the wet oxidation at $36^{\circ}C$ although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Characterization of the $CoO_x$ catalyst by acquiring XPS spectra of both fresh and used Co surfaces gave different surface spectral features of each $CoO_x$. Co $2p_{3/2}$ binding energy of Co species exposed predominantly onto the outermost surface of the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of $CoTiO_x$ such as $Co_2TiO_4$ and $CoTiO_3$. The spent catalyst possessed a 780.3 eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly $Co_3O_4$. XRD measurements indicated that the phase structure of Co species in 5% $CoO_x/TiO_2$ catalyst even before reaction is quite comparable to the diffraction lines of external $Co_3O_4$ standard. A model structure of $CoO_x$ present on titania surfaces would be $Co_3O_4$, encapsulated in thin-film $CoTiO_x$ species consisting of $Co_2TiO_4$ and $CoTiO_3$, which may be active for the decomposition of TCE in a flow of water.

Functional Properties of Soybean Curd Whey Concentrate by Nanofiltration and Effects on Rheological Properties of Wheat Flour Dough (나노여과에 의한 순물 농축액의 기능적 특성 및 밀가루 반죽의 리올로지 성질에 미치는 영향)

  • Eom, Sang-Mi;Kim, You-Pung;Chang, Eun-Jung;Kim, Woo-Jung;Oh, Hoon-Il
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.3
    • /
    • pp.243-253
    • /
    • 2006
  • This study was designed to investigate the feasibility of utilizing concentrates of sunmul(soybean curd whey), the waste by-product of soybean curd processing, as functional food ingredients. Sunmul was concentrated by nanofiltration fo11owing ultrafiltration and then freeze-dried. The oil adsorption capacity of the nanofiltraion(NF) powder(97.33g/100g) was similar to that of sunmul powder(94.17g/100g), but was lower than that of ISP(isolated soy protein). However, the water holding capacity of NF powder could not be determined because the NF powder completely dissolved in water. The protein solubilities of sunmul powder and ISP in distilled H$_{2}$O, 0.1M and 0.5M NaCl were lowest at pH 4.0 and increased at more acidic or alkaline conditions. However, the protein solubility of NF powder was at its minimum at pH 6.0 and increased at more acidic or alkaline conditions. Emulsifying activity indexes of NF powder in 4% and 6% solution were minimal at pH 4.0 and 6.0, respectively, which were 3 to 8 times lower than that of sunmul powder. The emulsion stability of 4% sunmul solution was lowest at pH 4.0, but that of NF powder was highest at pH 5.0 and decreased at more acidic or alkaline conditions at all concentrations of solution. The total free amino acid contents of protein in sunmul, and NF power were 99.07 and 2,110.10mg%, respectively, and NF powder exhibited especially high threonine content. Rapid viscosity analysis of dough with 1 to 5% added NF powder demonstrated that all of the peak and final viscosities decreased with increasing NF powder concentration compared to the control.

Processing Conditions of the Fermented and Dried Sauces Using Fish Hydrolysates (어류 가수분해물을 이용한 건조젓갈의 제조조건)

  • BAE Tae-Jin;CHOI Ok-Soo;KANG Hoon-I
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.170-174
    • /
    • 1999
  • Proessing conditions for fermented and dried sauces with the underutilized fishes were investigated. Hair tail, gizzard shad, and kangdale were hydrolyzed at $60^{\circ}C$ for 6 hours using $4\%$ Alcalase, and their hydrolysates were separted by molecularporous membrane. The hydrolytic ratios of hair tail, gizzard shad, and kangdale were estimated to be $84.2\%$, $83.6\%$ and $85.1\%$, respectively. Amino nitrogen recoveries were determind to be $73.1\~73.9\%$ by a membrane with molecular weight cutoff 100 dalton and $91.7\~92.5\%$ by a membrane with 500 dalton. Ultrafiltration was very efficient means for removing bitter taste. With the additions of $2\%$ glucose, $4\%$ lactose and $4\%$ skim milk, product yields of hair tail, gizzard shad, and kangdale were determind to be $16.4\%,\;17.2\%$ and $17.0\%$, respectively. Water adsorption rates of hair tail and kangdale showed $5.0\~9.2\%$ and $5.5\~9.6\%$, respectively, under Aw 0.52$\~$0.94. Contents of total nitrogen in the fermented and dried sauces prepared with hair tail, gizzard shad and kangdale were $3.9\%,\;4.1\%$ and $3.7\%$, respectively, and those of amino nitrogen were $3.2\%,\;3.4\%$ and $3.1\%$, respectively. In the fermented and dried sauces prapared with hair tail, gizzard shad and kangdale, the hygroscopities at Aw 0.88 were $6.9\%,\;7.5\%$ and $6.8\%$, respectively, and solubilities under dissolved in water for 30 minutes were $84.6\%,\;83.6\%$ and $93.8\%$, respectively.

  • PDF

Characterization of Sedimentation and pH Neutralization as Pretreatment of Acid Contaminated Water (산 오염수 전처리용 침전 및 중화 특성)

  • Im, Jongdo;Lee, Sangbin;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.9
    • /
    • pp.33-40
    • /
    • 2022
  • Sedimentation and pH neutralization has been investigated as preteatment of acid contaminate water. The settling and neutralizing process derive more effective degradation efficiency as the pre-treatment process before the removal process of adsorption, volatile, biodegradation, or oxidation. Settling velocity, uniformity coefficient, coefficient of curvature, and grain size index can define in the sedimentation process for characteristics of the soil. The stainless steel sieve has been used to separate each particle size of the dry soil by assembling in order of 4, 10, 20, 40, 80, 100, and 200 mesh sizes. The soil from Gamcheon Port in Busan drops upper side of the sieve and shakes back and forth to separate each different size of the particle. The 1L of Imhoff cone and 200 mL of the mass cylinder were used as settling tanks to calculate settling velocity. Stokes' equation was used to figure out the average density of dry soil with a value from settling velocity. In the results, the average particle density and lowest settling velocity were 1.93 g/cm3 and 0.11 cm/s, respectively. These values can detect the range of settling points of sediment to prevent chemical accidents. In pH neutralization, the initial pH of 2, 3, 4, and 5 of nitric acid and sulfuric acid are used as an acid solution; 0.1, 0.01, and 0.001 M of sodium hydroxide and calcium hydroxide are used as a base solution. The main goal of this experiment is to figure out the volume percentage of the acid solution becomes pH 7. The concentration of 0.001 M of base solution exceeds all the conditions, 0.01 M exceeds partially, and 0.1 M does not exceed 5 v/v% except pH 2. Calcium hydroxide present less volume than sodium hydroxide at pH neutralization both sulfuric and nitric acid.

Mapping the Research Landscape of Wastewater Treatment Wetlands: A Bibliometric Analysis and Comprehensive Review (폐수 처리 위한 습지의 연구 환경 매핑: 서지학적 분석 및 종합 검토)

  • C. C. Vispo;N. J. D. G. Reyes;H. S. Choi;M.S. Jeon;L. H. Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.145-158
    • /
    • 2023
  • Constructed wetlands (CWs) are effective technologies for urban wastewater management, utilizing natural physico-chemical and biological processes to remove pollutants. This study employed a bibliometric analysis approach to investigate the progress and future research trends in the field of CWs. A comprehensive review of 100 most-recently published and open-access articles was performed to analyze the performance of CWs in treating wastewater. Spain, China, Italy, and the United States were among the most productive countries in terms of the number of published papers. The most frequently used keywords in publications include water quality (n=19), phytoremediation (n=13), stormwater (n=11), and phosphorus (n=11), suggesting that the efficiency of CWs in improving water quality and removal of nutrients were widely investigated. Among the different types of CWs reviewed, hybrid CWs exhibited the highest removal efficiencies for BOD (88.67%) and TSS (95.67%), whereas VSSF, and HSSF systems also showed high TSS removal efficiencies (83.25%, and 78.83% respectively). VSSF wetland displayed the highest COD removal efficiency (71.82%). Generally, physical processes (e.g., sedimentation, filtration, adsorption) and biological mechanisms (i.e., biodegradation) contributed to the high removal efficiency of TSS, BOD, and COD in CW systems. The hybrid CW system demonstrated highest TN removal efficiency (60.78%) by integrating multiple treatment processes, including aerobic and anaerobic conditions, various vegetation types, and different media configurations, which enhanced microbial activity and allowed for comprehensive nitrogen compound removal. The FWS system showed the highest TP removal efficiency (54.50%) due to combined process of settling sediment-bound phosphorus and plant uptake. Phragmites, Cyperus, Iris, and Typha were commonly used in CWs due to their superior phytoremediation capabilities. The study emphasized the potential of CWs as sustainable alternatives for wastewater management, particularly in urban areas.