Physicochemical Properties of the Synthetic Hectorite

합성 헥토라이트의 물리화학적 특성

  • Published : 2008.09.30

Abstract

Hectorite was synthesized under hydrothermal conditions and its physicochemical properties have been investigated in terms of temperature, pH, and organic agent to observe the change of doll basal spacing. The IR, CEC, MB, swelling volume and specific surface area of the hectorite were measured for the characterization. The solid/liquid ratio of hectorite to distilled water before mixing with other materials was also determined for its use as a multi-functional material. The $d_{001}$ basal spacing decreased from $12.63\;\AA$ at room temperature to $10.19\;\AA$ at $650^{\circ}C$ in the heating tests. As the pH of hectorite slurry increased. the $d_{001}$ basal spacing decreased. reaching the lowest value of $13.33\;\AA$ at pH 7 and afterward, increased. All the fool basal spacings of the hectorite increased when it was intercalated with the following solvents: $12.86\;\AA$ in diethyl ether, $13.31\;\AA$ in acetonitrile. $13.59\;\AA$ in methanol, $14.05\;\AA$ in ethanol, $15.69\;\AA$ in acetone, and $17.42\;\AA$ in ethylene glycol. Our IR analysis results were in good agreement with those of other researchers. The CEC, MB, swelling volume and specific surface area of hectorite were determined to be 105 cmol/kg, 80 cmol/kg, $68\sim74ml/2g$ and $213m^{2}/g$, respectively. Also, the hectorite to distilled water ratio of 2 to 100 was found to be most favorable for mixing with other materials such as the solvents mentioned above.

수열법에 의하여 합성된 헥토라이트의 물리화학적 특성을 연구하였다. 조건에 따른 저면간격의 변화양상을 관찰하기 위하여, 가열실험, pH 변화실험 및 유기용매 치환 실험을 수행하였으며, 헥토라이트의 특성평가를 위하여 IR 및 CEC, MB, 팽윤도, 비료면적 등을 측정하였다. 또한 헥토라이트의 기능성 향상을 위한 타물질과의 혼합 가능 고액비를 측정하였다. 가열 실험결과, (001)면의 저면간격은 12.63 $\AA$ (상온)으로부터 10.19 $\AA$ ($650^{\circ}C$)으로 감소하였고, pH 7인 경우 가장 낮은 저면간격$(13.33\;\AA)$을 보인 반면, 이를 기준점으로 pH > 7과 pH < 7인 영역에서 점차 증가하는 추세를 보였다. 유기용매 치환 시, (001)면의 저면간격은 디에틸에테의$(12.86\;\AA)$, 아세토니트릴$(13.31\AA)$, 메칠알콜$(13.59\;\AA)$, 에칠알콜$(14.05\;\AA)$, 아세톤$(15.69\;\AA)$ 및 에틸렌 글리콜$(17.42\;\AA)$ 순으로 증가하였다. IR 분석 결과, 기존 타연구자들의 결과와 일치하였으며, 치토라이트의 CEC, MB, 팽윤도 및 비교면적은 각각 105 cmol/, 80 cmol/kg, $68\sim74ml/2g$$213m^{2}/g$이었다. 또한 헥토라이트의 기능성 향상을 위한 타물질과의 혼합 가능비(헥토라이트/증류수)는 2/100 이하임을 확인하였다.

Keywords

References

  1. 류경원 (2007) 수열법에 의한 스멕타이트의 합성 및 광물학적 특성. 충북대학교 박사학위 논문, 127
  2. 류경원, 장영남, 조성준, 최상훈 (2006) 유기 바이델라 이트의 합성 및 거동연구. 한국광물학회지, 19. 1. 123-128
  3. 문희수 (1996) 점토광물학. 민음사, 649
  4. 장영남, 배인국, 채수천, 류경원, 김유동, 장희동 (2007) 저온 수열법에 의한 헥토라이트 합성. 한국광물학회지 20, 1-6
  5. 채영배, 정수복, 김완태, 안기오, 현종영, 임정한 (2005) 천연 층상화합물의 고순도화 및 organo-clay 제조 공 정 연구, 산업자원부
  6. Komadel, P., Madejova, J., Janek, M., Gates, W.P., Kirckpatrick, R.J., and Stucki, J.W. (1996) Dissolution of hectorite in inorganic acids. Clays Clay Miner., 44, 228-236 https://doi.org/10.1346/CCMN.1996.0440208
  7. Barrer, R.M. and Dicks, L.W.R. (1967) Chemistry of soil minerals. Part IV. Synthetic alkylammonium montmorillonites and hectorites. J. Chem. Soc. A, 1523-1529 https://doi.org/10.1039/j19670001523
  8. Caillere, S., Oberlin, A., and Henin, S. (1954) Electron microscope study of several phyllitic silicates synthesized at low temperatures. Clay Minerals Bull., 2, 146-156 https://doi.org/10.1180/claymin.1954.002.12.05
  9. Farmer, V.C. (1979) in: van Olphen, H., Fripiat, J.F. (des), Data handbook for clay minerals and other non-metallic materials, Pergamon Press, Oxford, p. 299
  10. Gadsden, J.A. (1975) Infrared spectra of minerals and related inorganic compounds, Butterworth, London, 277 pp
  11. Jaber, M. and Miehe-Brendle, J. (2008) Synthesis, characterization and applications of 2:1 phyllosilicates and organophyllosilicates: Contribution of fluoride to study the octahedral sheet. Microporous and Mesoporous Materials, 107, 121-127 https://doi.org/10.1016/j.micromeso.2007.02.047
  12. Kloprogge, J., Frost, R.L., and Hickey, L. (2000) Infrared emissionspectroscopic study of the dehydroxylation of some hectorites. Thermochimica Acta, 345, 145-156 https://doi.org/10.1016/S0040-6031(99)00359-7
  13. Kloprogge, J.T., Jansen, J.B.H., and Geus, J.W. (1990) Characterization of synthetic Na-beidellite. Clays and Clay Miner., 16, 405-414 https://doi.org/10.1346/CCMN.1969.0160602
  14. Kollar, T., Konya, Z., Palinko, I., and Kiricsi, R. (2001) Intercalation of various oxide species in-between Laponite layers studied by spectroscopic methods. J. Molecular Structure, 563-564, 417-420 https://doi.org/10.1016/S0022-2860(00)00827-9
  15. Komadel, P., Madejova, J., Janek, M., Gates, W.P., Kirckpatrick, R.J., and Stucki, J.W. (1996) Dissolution of hectorite in inorganic acids. Clays Clay Miner., 44, 228-236 https://doi.org/10.1346/CCMN.1996.0440208
  16. Madejova, J., Bujdak, J., Janek, M., and Komadel, P. (1998) Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite Specrochim. Acta A54, 1397-1406
  17. Strese, H. and Hofmann, Z. (1941) Synthese von Magnesiumsilikat-Gelen mit zweidimensional regelmaBiger Struktur. Alleg. Chem. 247, 65-95 https://doi.org/10.1002/zaac.19412470107
  18. Torii, K. and Iwasaki, T. (1987) Synthesis of hectorite. Clay Science, 7, 1-6
  19. van der Marel, H.W. and Beutelsacher, H. (1976) Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier, Amsterdam, 396 pp