• Title/Summary/Keyword: Water Tank Model

Search Result 520, Processing Time 0.027 seconds

An experimental research about the grounding resistance of the mesh electrode in the model of water tank (메쉬접지극의 접지저항에 관한 실증연구)

  • Kim, Ju-Chan;Choi, Jong-Gyu;Lee, Chung-Sik;Koh, Hee-Seog
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.349-354
    • /
    • 2005
  • Recently, there are many equipment of electricity, electronics, and communication which need to grounding in the building. When the electric current flows into a certain grounding system in the same building, the potential rise of other grounding system is possible to be affected by its potential rise. This potential interference was affected by the surface potential, it is deeply related whit the electrode shape. In this paper, basic formula is deduced on the basis of both electrodes surface potential of grounding electrode in a source of the potential interference and groundidng electrode which receive the potential interference. Therefore the degree of potential interference as multiple groundidng electrode can be verified the simulated results by means of the simple model in advance. This is for investigating the grounding resistance of grounding electrodes, the experiment was performed with model-scale of the grounding system and the scaled model grounding system was to this experiment using a water tank of a stainless steel-hemisphere shape. since mesh electrodes have been widely in the general building, we're tried to analyze that this water tank model and it's simulation as well.

  • PDF

Seven-Parameter Log Linear Model for Estimating Constituent Loads in Nakdong River (7변수 대수선형모형을 이용한 낙동강 오염부하량 추정)

  • Lee, A-Yeon;Choi, Dae-Gyu;Kim, Sang-Dan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1400-1404
    • /
    • 2010
  • In this study the flow duration curves and load duration curves for Nakdong river basin are analyzed. The TANK model is used as s hydrologic simulation model whose parameters are estimated from 8-days intervals flow data measured by Nakdong River Water Environment Laboratory. also in this study a Minimum Variance Unbiased Estimator(MVUE) is confirmed that it provides satisfactory load estimate. The Seven-Parameter Log Linear Model for estimating Total Organic Carbon(TOC) and Biochemical Oxygen Demand(BOD) loads in Nakdong river using a MVUE.

  • PDF

presumption of Earth Resistance by Water Tank Model (수조모델 실험에 의한 접지저항 추정)

  • 고희석;최종규;김주찬;이충식
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.125-131
    • /
    • 2002
  • It is very important to assume potential distribution to be generated in electrode environs and grounding resistance by current beforehand, when incoming at grounding electrode to plan efficient grounding facilities In this paper, we analyzed grounding resistance through a simulation experiment by a water tank scaled model electrode of the rectangular earth plate, a theoretical Calculation result of the rectangular earth plate and measurement of grounding resistance buried rectangular earth plate analysing earth surface potential.

  • PDF

Application of Bayesian Approach to Parameter Estimation of TANK Model: Comparison of MCMC and GLUE Methods (TANK 모형의 매개변수 추정을 위한 베이지안 접근법의 적용: MCMC 및 GLUE 방법의 비교)

  • Kim, Ryoungeun;Won, Jeongeun;Choi, Jeonghyeon;Lee, Okjeong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.4
    • /
    • pp.300-313
    • /
    • 2020
  • The Bayesian approach can be used to estimate hydrologic model parameters from the prior expert knowledge about the parameter values and the observed data. The purpose of this study was to compare the performance of the two Bayesian methods, the Metropolis-Hastings (MH) algorithm and the Generalized Likelihood Uncertainty Estimation (GLUE) method. These two methods were applied to the TANK model, a hydrological model comprising 13 parameters, to examine the uncertainty of the parameters of the model. The TANK model comprises a combination of multiple reservoir-type virtual vessels with orifice-type outlets and implements a common major hydrological process using the runoff calculations that convert the rainfall to the flow. As a result of the application to the Nam River A watershed, the two Bayesian methods yielded similar flow simulation results even though the parameter estimates obtained by the two methods were of somewhat different values. Both methods ensure the model's prediction accuracy even when the observed flow data available for parameter estimation is limited. However, the prediction accuracy of the model using the MH algorithm yielded slightly better results than that of the GLUE method. The flow duration curve calculated using the limited observed flow data showed that the marginal reliability is secured from the perspective of practical application.

Hudraulic Model Test and Numerical Analysis of the Surge Tank (조압수조의 수리모형실험과 수치해석)

  • 노재화;이희영
    • Water for future
    • /
    • v.17 no.1
    • /
    • pp.45-56
    • /
    • 1984
  • The whole process from the model design to the results of the test, of hydraulic model test of restricted entry surge tank of Hapcheon dam, is reviewed with the respect to the flowchart of the experiment. And the experimental results are compared with the numerical values which are calculated by Runge-Kutta-Gill scheme. The comparision show a reasonable agreement. In final design, it doesn't matter that only numerical values are considered in case of the short design period, or difficulties of budget, and or the comparably simple type surge tank as Hapcheon dam.

  • PDF

GIS Application for Rural Water Quality Management (농촌소유역 하천수질관리를 위한 GIS응용)

  • 김성준
    • Spatial Information Research
    • /
    • v.4 no.2
    • /
    • pp.147-157
    • /
    • 1996
  • A rural water quality management information system(RWQMIS) by integrating Geo¬graphic Information System(GIS) with the existing models (pollutants transport and river water quality) is described. A simple pollutant load model to calculate delivered pollutants to stream, Tank model to generate daily runoff and QUAL2E model to predict river water quality, were incorporated into GIS. The system was applied to $80km^2$ watershed in Icheon Gun and Yongin Gun, Kyonggi Do. The spatial distributions of produced pollutant load, discharged pollutant load, delivered ratio to the stream, and the river water quality status for given sites were successfully generated.

  • PDF

A Study of Optimal Water Supply Planning in Mountainous Area (산지유역에서의 최적용수공급방안에 관한 연구)

  • Kim, Ji-Hak;Park, Ki-Bum
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.967-973
    • /
    • 2006
  • In this study used tank model and specific discharge to calculate low-flow of mountain basin and supply data that need in water resources plan. Low-flow is calculated byspecific discharge and area ratio method as resulted that calculate storage of low-flow by tank model was construed that showd all similar aspect. In judged to help in water resources plan establishment calculating low-flow using model to supplement uncertainty of observed data in that calculate of low-flow ungaged mountain area. It shows by economical and realistic plan until 12 years after development that run parallel and use economic performance analysis result valley flow and groundwater. But wide area water services and Chungju dam since 12 years onward was expose that is economic.

Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (I): Methodology and Model Formulation (다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(I): 방법론과 모형구축)

  • Kim, Tae-Soon;Jung, Il-Won;Koo, Bo-Young;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.677-685
    • /
    • 2007
  • The objective of this study is to evaluate the applicability of multi-objective genetic algorithm(MOGA) in order to calibrate the parameters of conceptual rainfall-runoff model, Tank model. NSGA-II, one of the most imitating MOGA implementations, is combined with Tank model and four multi-objective functions such as to minimize volume error, root mean square error (RMSE), high flow RMSE, and low flow RMSE are used. When NSGA-II is employed with more than three multi-objective functions, a number of Pareto-optimal solutions usually becomes too large. Therefore, selecting several preferred Pareto-optimal solutions is essential for stakeholder, and preference-ordering approach is used in this study for the sake of getting the best preferred Pareto-optimal solutions. Sensitivity analysis is performed to examine the effect of initial genetic parameters, which are generation number and Population size, to the performance of NSGA-II for searching the proper paramters for Tank model, and the result suggests that the generation number is 900 and the population size is 1000 for this study.

A Study on the Experimental Trend Analysis of Underwater Noise Factors in Compressed Water System of the Linear Pump Type (선형펌프방식 압축수 시스템의 실험적 수중소음인자별 경향분석 연구)

  • Yi, Jong-ju;Ahn, Kang-su;Sur, Jong-mu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.228-236
    • /
    • 2021
  • In order to understand the underwater noise source factor of the linear pump type forced ejection system, a reduced-model compressed water experiment device was developed. The reduced-model compressed water experiment device consists of a reverberation tank, a linear pump type forced ejection device, and an underwater vehicle. The underwater noise source was selected from the hydraulic ram moving speed, the hydraulic ram/piston pipe spacing, the ejection pipe inlet/water ram area ratio, and the number of water ram inlets. The underwater vehicle was ejected into the reverberation tank by the device. The source level was derived from the measured sound pressure. The source level tends to increase as the hydraulic ram/piston tube spacing and the hydraulic ram moving speed increase. The source level tended to increase as the area ratio was increased, but the level was weak. The number of water ram inlet did not affect the source level.