References
- Abbaspour, K., Yang, J. Maximov, I., Siber, R., Bogner, K, Mieleitner, J., and Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-Alpine/Alpine thur watershed using SWAT, Journal of Hydrology, 333, 413-430. https://doi.org/10.1016/j.jhydrol.2006.09.014
- Bergstrom, S. (1976). Development and application of a conceptual runoff model for Scandinavian catchments, SMHI Report RHO 7, Norrkoping, 134.
- Bernardo, J. and Smith, A. (1994). Bayesian Theory, Wiley Chichester.
- Beven, K. (2019). Validation and Equifinality, In: Beisbart C., Saam N. (eds) Computer Simulation Validation. Simulation Foundations, Methods and Applications. Springer, Cham.
- Beven, K. and Binley, A. (1992). The future of distributed models: model calibration and uncertainty prediction, Hydrological Process, 6, 279-298. https://doi.org/10.1002/hyp.3360060305
- Campbell, E., Fox, D., and Bates, B. (1999). A Bayesian approach to parameter estimation and pooling in nonlinear flood event models, Water Resources Research, 35, 211-220. https://doi.org/10.1029/1998WR900043
- Franks, S., Gineste, P., Beven, K., and Merot, P. (1998). On constraining the predictions of a distributed model: The incorporation of fuzzy estimates of saturated areas into the calibration process, Water Resources Research, 34, 787-797. https://doi.org/10.1029/97WR03041
- Gelman, A. (1995). Inference and monitoring convergence, in: Gilks et al. (Eds.), Markov Chain Monte Carlo in Practice, Chapman & Hall, London, 131-142.
- Geyer, C. (1992). Practical Markov chain Monte Carlo, Statistical Science, 7, 473-511. https://doi.org/10.1214/ss/1177011137
- Gilks, W., Richardson, S., and Spiegelhalter, D. (1995). Introducing Markov Chain Monte Carlo, in: Gilks et al. (Eds.), Markov Chain Monte Carlo in Practice, Chapman & Hall, London, 1-18.
- Harmon, R. and Challenor, P. (1997). A Markov chain Monte Carlo method for estimation and assimilation into models, Ecological Modeling, 101, 41-59. https://doi.org/10.1016/S0304-3800(97)01947-9
- Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97-109. https://doi.org/10.1093/biomet/57.1.97
- Joh, H., Park, J., Jang, C., and Kim, S. (2012). Comparing prediction uncertainty analysis techniques of SWAT simulated streamflow applied to Chungju dam watershed, Journal of Korea Water Resources Association, 45(9), 861-874. [Korean Literature] https://doi.org/10.3741/JKWRA.2012.45.9.861
- Kagabu, M., Ide, K., Hosono, T, Nakagawa, K., and Shimada, J. (2020). Describing coseismic groundwater level rise using tank model in volcanic aquifers, Kumamoto, southern Japan, Journal of Hydrology, 582, 124464, https://doi.org/10.1016/j.jhydrol.2019.124464.
- Kim, B., Kim, S., Lee, E., and Kim, H. (2007). Methodology for estimating ranges of SWAT model parameters: Application of Imha lake inflow and suspended sediments, Korean Society of Civil Engineers Magazine, 27(B), 661-668. [Korean Literature]
- Kim, J. and Kim, S. (2007). Flow duration curve analysis for Nakdong river basin using TMDL flow data, Journal of Korean Society on Water Environment, 23(3), 332-338. [Korean Literature]
- Kim, M., Heo, T., and Chung, S. (2013). Uncertainty analysis on the simulations of runoff and sediment using SWAT-CUP, Journal of Korean Society on Water Environment, 29(5), 681-690. [Korean Literature]
- Kim, M., Ko, I., and Kim, S. (2009). An analysis of the effect of climate change on Nakdong river flow condition using CGCM's future climate information, Journal of Korean Society on Water Environment, 25(6), 863-871. [Korean Literature]
- Kim, S., Kang, D., Kim, M., and Shin, H. (2007). The possibility of daily flow data generation from 8-day intervals measured flow data for calibrating watershed model, Journal of Korean Society on Water Environment, 23(1), 64-71. [Korean Literature]
- Kim, S., Lee, K., and Kim, H. (2005). Low flow estimation for river water quality models using a long-term runoff hydrologic model, Journal of Korean Society on Water Environment, 21(6), 575-583. [Korean Literature]
- Korea Meteorological Administration (KMA). (2020). Open Weather data portal, https://data.kma.go.kr/cmmn/main.do (accessed May. 2020).
- Lee, A. and Kim, S. (2011). An analysis of the effect of climate change on Nakdong river environmental flow, Journal of Korean Society on Water Environment, 27(3), 273-285. [Korean Literature]
- Lee, A., Cho, S., Kang, D. K., and Kim, S. (2014). Analysis of the effect of climate change on the Nakdong river stream flow using indicators of hydrological alteration, Journal of Hydro-environmental Research, 8, 234-247. https://doi.org/10.1016/j.jher.2013.09.003
- Lee, A., Cho, S., Park, M. J., and Kim, S. (2013). Determination of standard target water quality in the Nakdong river basin for the total maximum daily load management system in Korea, KSCE Journal of Civil Engineering, 17, 309-319. https://doi.org/10.1007/s12205-013-1893-5
- Lee, J., Kim, J., Lee, J., Kang, I., and Kim, S. (2012). Current status of refractory dissolved organic carbon in the Nakdong river basin, Journal of Korean Society on Water Environment, 28(4), 538-550. [Korean Literature]
- Lee, J., Kim, U., Kim, L. H., Kim, E. S., and Kim, S. (2019). Management of organic matter in watersheds with insufficient observation data: the Nakdong river basin, Desalination and Water Treatment, 152(2019), 44-57, doi: 10.5004/dwt.2019.24021.
- Makowski, D., Wallach, D., and Tremblay, M. (2002). Using a Bayesian approach to paramter estimation; Comparison of the GLUE and MCMC methods, Agronomie, 22,191-203. https://doi.org/10.1051/agro:2002007
- Malakoff, D. (1999). Bayes offers a 'New' way to make sense of numbers, Science, 286, 1460-1464. https://doi.org/10.1126/science.286.5444.1460
- Mckay, M., Baekman, R., and Conover, W. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21(2), 239-245. https://doi.org/10.1080/00401706.1979.10489755
- Metropolis, N., Rosenbluth, A., Rosenbluth, M., and Teller A. H. (1953). Equation of state calculations by fast computing machines, Journal of Chemical Physics, 21, 1087-1091. https://doi.org/10.1063/1.1699114
- Ministry of Environment (ME). (2020). Water Environment Information System (WEIS), http://water.nier.go.kr/publicMain/mainContent.do (accessed May. 2020).
- Parajka, J., Merz, R., and Bloschl, G. (2005). A comparison of regionalisation methods for catchment model parameters, Hydrology and Earth System Sciences, 9, 157-171. https://doi.org/10.5194/hess-9-157-2005
- Perrin, C., Michel, C., and Andreassian, V. (2003). Improvement of a parsimonious model for streamflow simulation, Journal of Hydrology, 279, 275-289. https://doi.org/10.1016/S0022-1694(03)00225-7
- Pushpalatha, R., Perrin, C., Le Moine, N., Mathevet, T., and Andreassian, V. (2011). A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, Journal of Hydrology, 411(1-2), 66-76. https://doi.org/10.1016/j.jhydrol.2011.09.034
- Raftery A. and Lewis S. (1995). Implementing MCMC, in: Gilks et al. (Eds.), Markov Chain Monte Carlo in Practice, Chapman & Hall, London, 115-130.
- Rajib, M., Merwade, V., and Yu, Z. (2016). Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture, Journal of Hydrology, 536, 192-207. https://doi.org/10.1016/j.jhydrol.2016.02.037
- Ryu, J., Kang, H., Choi, J., Kong, D., Gum, D., Jang, C., and Lim, K. (2012). Application of SWAT-CUP for streamflow auto-calibration at Soyang-gang dam watershed, Journal of Korean Society on Water Environment, 28(3), 347-358. [Korean Literature]
- Shulz K., Beven, K., and Huwe B. (1999). Equifinality and the problem of robust calibration in nitrogen budget simulations, Soil Science Society of America Journal, 63, 1934-1941. https://doi.org/10.2136/sssaj1999.6361934x
- Sugawara, M. (1979). Automatic calibration of the tank model, Hydrological Sciences Bulletin, 24(3), 375-388. https://doi.org/10.1080/02626667909491876
- Sun, M., Zhang, X., Huo, Z., Feng, S., Huang, G., and Mao, X. (2016). Uncertainty and sensitivity assessment of an agricultural-hydrological model, Journal of Hydrology, 534, 19-30. https://doi.org/10.1016/j.jhydrol.2015.12.045
- Wallach, D. (1995). Regional optimization of fertilization using a hierarchical linear model, Biometrics, 51, 338-346. https://doi.org/10.2307/2533340