• Title/Summary/Keyword: Water Quantity

Search Result 1,450, Processing Time 0.028 seconds

Prediction Model of Absorbed Quantity and Diffusivity of Salf in Radish during Salting (무우의 염절임시 소금의 침투량과 확산도 예측모델)

  • 최용희;권태연
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.6
    • /
    • pp.572-581
    • /
    • 1991
  • For the development of a model to predict absorbed salt quantity in radish during salting, absorbed salt quantity and water content change in radish by the hour were measured at 5%, 10%, 15% brine concentration and $10^{\circ}C,\;20^{\circ}C,\;30^{\circ}C$ respectively. Absorbed salt quantity in radish by the time showed logarithmic function, absorbed salt quantity by brine concentration and temperature showed linear relation. A model to predict absorbed salt quantity in radish at each time, brine concentration and temperature was calculated by the regression program of SPSS. Apparent diffusivity of salt in radish was calculated from appropriated diffusion equation solution of Fick's second law using computer simulation. Salt diffusivity in radish increased as brine concentration increased and the effect of temperature could by expressed by Arrhenius equation. A model equation which could predict salt diffusivity was developed by regression analysis. To specify relation between salt quantity which absorbed into radish and water content which removed out of it, Flux ratio(${\Delta}W/{\Delta}S$) was calcuated. The values showed that the removed water content was greater than the absorbed salt quantity.

  • PDF

The Study on the Integrated Monitoring of Water Quantity and Quality Data (수량 및 수질관측 통합연계 운영 연구)

  • Yi, Jae-Eung;Kim, Mun-Mo;Park, Sung-Je
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.115-123
    • /
    • 2009
  • Integrated information to water quantity and quality is essential for planning water resources management as well as operating water-related infrastructures. Because data collection process including monitoring and maintenance is separated in different governmental agencies in Korea, integrating quantity and quality may provide effective and better management implementation. In this study, a number of suggestions regarding integration of water monitoring were concluded in terms of technological, legal and institutional implications. First, it is necessary to discuss national water monitoring plan, national water information management plan, agreement of standard terms of monitoring between ministries, and to revise the law(river law and water quality management law). Present stations for water monitoring should be used for both of quantity and quality monitoring. If station is newly installed or relocated, it is better that one single agency maintain monitoring frequency and data management as well. In addition, a monitoring protocol need to be agreed by each of parties. In order to develop integrated monitoring system, quality assurance of the collected data should be properly maintained. Since many purposes haven been concerned using of data analysis and assessment so far, it may not be easy to integrate water quantity and quality monitoring in a short period. However, the alternatives including enhancing institutional regulations and programs, advanced technology may promote an efficient integrated water monitoring.

Effect of Water Quantity in Pot on Growth of Some Wood Plant by Water Flooding Culture (몇 가지 목본식물의 담수 재배 시 용기 내 관수량이 식물의 생육에 미치는 영향)

  • Song, C.Y.;Moon, J.Y.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.21 no.2
    • /
    • pp.49-58
    • /
    • 2019
  • This study aimed to determine of water quantity in pot for water flooding culture of Pinus thunbergii Parl., Chaenomeles japonica Lindl. ex Spach and Osmanthus fragrans Lour. The survival rate of P. thunbergii Parl. and C. japonica Lindl. ex Spach in the water quantity in pot 60% or 40% was 100% and the rate of O. fragrans Lour. in the 60% or 40% water was 90.0% or 93.3%. However the survival rate of the 100% water was less than 90% in P. thunbergii Parl, C. japonica Lindl. ex Spach and less than 60% was in O. fragrans Lour. The increasing rate of plant height for P. thunbergii Parl. in the water quantity in pot 40% or 60% was above 50%, and the C. japonica Lindl. ex Spach or O. fragrans Lour. was above 90%. However the increasing rate of plant height in the water 100% was less then the others as a 38.2%, 65.4% or 66.7% in respectively in P. thunbergii Parl., C. japonica Lindl. ex Spach and O. fragrans Lour. The increasing rate for leaf number for P. thunbergii Parl. in the water quantity 40% or 60% was above 80%, and the C. japonica Lindl. ex Spach or O. fragrans Lour. was above 70%, however the 100% water was below 60% in all treatment. Therefore, the survival rates in some woody plants of the 40% or 60% water in the pot was above 90% and the plant growth of plant height, plant width, leaf number or fresh weight was proper increased. But the survival rates and growth of the 100% water in the pot was decreased

Implementations of Remote Sensing, GIS, and GPS for Water Resources and Water Quality Monitoring

  • Wu, Mu-Lin;Chen, Chiou-Hsiung;Liu, Shiu-Feng;Wey, Jiun-Sheng
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1191-1193
    • /
    • 2003
  • Water quantity and quality monitoring at Taipei Watershed Management Bureau (WRATB) is not only a daily business but also a long term job. WRATB is responsible for providing high quality drinking water to about four millions population in Taipei. The quality of drinking water provided by WRATB is among one of the best in Taiwan. The total area is 717 square kilometers. The water resource pollution is usually divided into two categories, point source pollution and nonpoint source pollution. Garbage disposal is the most important component of the point source pollution, especially those by tourist during holidays and weekends. Pesticide pollution, fertilizer pollution, and natural pollution are the major contributions for nonpoint source pollution. The objective of this paper is to implement remote sensing, geographic information systems, and global positioning systems to monitor water quantity and water quality at WRATB. There are 12 water quality monitoring stations and four water gauge stations at WRATB. The coordinates of the 16 stations were determined by GPS devices and created into the base maps. MapObjects and visual BASIC were implemented to create application modules for water quality and quantity monitoring. Water quality of the two major watersheds at WRATB was put on Internet for public review monthly. The GIS software, ArcIMS, can put location maps and attributes of all 16 stations on Internet for general public review and technical implementations at WRATB. Inquiry and statistic charts automatic manipulations for the past 18 years are also available. Garbage disposal by community and tourist were also managed by GIS and GPS. The storage, collection, and transportation of garbage were reviewed by ArcMap file format. All garbage cart and garbage can at WRATB can be displayed on the base maps. Garbage disposal by tourist during holidays and weekends can be managed by a PDA with a GPS device and a digital camera. Man power allocation for tourist garbage disposal management can be done in an integration of GIS and GPS. Monitoring of water quality and quantity at WRATB can be done on Internet and by a PDA.

  • PDF

An Experimental Study on the Accuracy of Concrete Unit-Water Content Using High-frequency Water Fraction Sensors (고주파수분센서를 이용한 콘크리트 단위수량 평가 정확도에 관한 실험적 연구)

  • Youn, Ji-Won;Lee, Seung-Yeop;Yu, Seung-Hwan;Yang, Hyun-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.61-62
    • /
    • 2022
  • The unit quantity is an important factor influencing the durability, workability, and quality of concrete. Methods for measuring the unit quantity include a high frequency heating method, a unit volume mass method, a capacitance method, and a microwave method. However, these methods have disadvantages of poor measurement method, time required, and accuracy, and a relatively experimental method compensating for these disadvantages was used to measure the unit quantity using a high frequency main sensor (FDR) capable of simple and fast measurement. In addition, the unit quantity was evaluated by analyzing the measurement data through deep learning.

  • PDF

Impacts of Yongdam dam managment Plan on Daechung dam Storage (용담댐 관리계획이 대청댐 저수량에 미치는 영향)

  • 박정남;이재면;김태얼
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.550-555
    • /
    • 1999
  • yongdam multipurpose is under construction to divert a part fo Geum riverlfow to Mankyung watershed and to supply the domestic water to the Chunju region and produce the hydro-electricity. Generally construction of dam by the method of inther-region water transfer affects the quantity and quality of water inthe down streams and reservoirs. The impact of operation plan of Yondgam dam on the quantity and quality of water in the Guem river and Daechung dam was investigated .It was recommended that the discharge of water transfer from one watershed to another should be minimized as much as possible.

  • PDF

Analysis of Operating and Maintenance Parameters for Agricultural Pipeline System Using EPANET (EPANET을 이용한 농업용 관수로 시스템의 운영 및 유지관리 인자 분석)

  • Kim, Nam Do;Kim, Sun Joo;Kwon, Hyung Joong;Kim, Phil Shik;Park, Hyun Jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.17-26
    • /
    • 2017
  • In this study, EPANET model which is using on the pipe network analysis was applied to Haenam irrigation district has provided irrigation water by pipeline system about 1,125ha and then have built pipe network to study area and supply performance evaluation of existing structure was analyzed by SPA (Single Period Analysis) in EPANET. As model results of simulation average ratio of maximum supply quantity/irrigation water requirements(base demand) was analyzed by 2.63. It means also that was analyzed as being capable of ensuring the water supply capacity. It was provided the necessary information for the maintenance facility through analyzed hydraulic behaviors in the pipeline inside such as flow velocities, pressures and hydraulic grade lines. It was satisfied with the allowable design criteria that was compared analyzed results with presented allowable design standards at agricultural production infra improvement project planning and design (Pipeline design standard). In order to analyze efficiency promotions of irrigation water, using Extended Period Simulation it was compared supply quantity with irrigation water requirements while pumps set operating pattern in 24 hours, then efficiency promotions of irrigation water was determined through analyzed oversupply water quantity and occurrence time by branch lines. According to results for oversupply quantity in Haenam district by time and end of branch lines efficiency promotions of irrigation water was suggested from 0.33 % to 37.59 %. To draw reasonable operating rules for water use and through this research, it is expected to be helpful for efficient water use and operational management of agricultural pipeline system to the current agricultural irrigation.

Analysis of Flow Duration and Estimation of Increased Groundwater Quantity Due to Groundwater Dam Construction (지하댐 건설로 인한 지하수 증가량 계산 및 유황 분석)

  • Kim, Jong-Tae;Kim, Gyoo-Bum;Chung, Il-Moon;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.91-98
    • /
    • 2014
  • This paper aims to calculate the increase in groundwater quantity following groundwater dam construction, and to assess its impact on surface water. In the study area of Osib-cheon, Yeongdeok, we estimated groundwater quantity, groundwater level, and effective porosity, and examined surface water fluctuations with respect to the increased groundwater quantity based on the flow duration. The results reveal that the increased groundwater quantity was at most $91,746m^3$ in the total drainage basin of the groundwater dam, and the reduced groundwater quantity was at most $11,259m^3$ in the lower zone of the groundwater dam. Therefore, the total groundwater resources secured was $80,487m^3$ and the decrease in groundwater quantity was just 12.27% of the amount of increase. There were changes in discharge rate by up to $3.00{\times}10^{-2}m^3/s$, as deduced from an analysis offlow duration as a result of groundwater dam construction. The overall difference between before and after construction of the dam was almost insignificant compared with the previous dam. The present results indicate that dammed groundwater can serve as an alternative water resource with sufficient quantity.

Electrorheological Properties of Water Activated Silica Gel Suspensions (수분 활성 실리카 겔 분산계의 전기유변학적 특성)

  • 안병길;최웅수;권오관;문탁진
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.115-123
    • /
    • 1997
  • The electrorheological (ER) behavior of suspensions in silicone oil of silica gel powder (average particle size 49 $\mu$m) absorbed water was investigated at room temperature with electric fields up to 2.4 KV/mm. In this paper, for development of succcessful ER fluids used for wide temperature range later, we would like to know a fundamental understanding of water on ER effect. As a first step, the ER fluids involving water activated silica gel were measured not only the electrical characteristics such as dielectric constant, current density and electrical conductivity but also the rheological properties on the strength of electric field, the quantity of dispersed phase and absorbed water. From the experimental results that water absorbed to the particles directly affects to the surface charge density of electric double layer model proposed by Schwarz and makes dielectric constant and current density of ER fluids increase. The current density and dynamic yield stress $($\tau$_y)$ of water activated silica gel suspensions was in exponential proportion to the strength of electric field, the quantity of dispersed phase and absorbed water. And the optimum water quantity and weight concentration of silica gel for electrorheological effect were 4-5 wt% and 15 wt%, respectively.

An Effect on the Properties of Antiwashout Underwater Concrete by mixing time and mixing quantity (배합시간과 배합량이 수중불분리성 콘크리트의 특성에 미치는 영향)

  • 박세인;김동명;김종수;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.345-350
    • /
    • 2000
  • The objective of this study makes investigation into the effect on the properties of underwater antiwashout concrete. which is followed by mixing time and mixing quantity. There is an tendency that (the compressive strength of underwater antiwashout concrete made and cured in fresh water or sea water) is increase when dry mixing time, mixing quantity, total mixing time is increase as unit weight grows. The difference of compressive strength (in case of no dry mixing time and 60 second) is averagely 46.8kgf/㎠ in the fresh water and 35.6kgf/㎠ in sea water. it's considered that dry mixing is dispersed by underwater antiwashout admixture.

  • PDF