• Title/Summary/Keyword: Water Quality Standards

Search Result 475, Processing Time 0.025 seconds

Development of Isotope Dilution-Liquid Chromatography/Tandem Mass Spectrometry as a Candidate Reference Method for the Determination of Acrylamide in Potato Chips

  • Park, Sun-Young;Kim, Byung-Joo;So, Hun-Young;Kim, Yeong-Joon;Kim, Jeong-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.737-744
    • /
    • 2007
  • An isotope dilution-liquid chromatography/tandem mass spectrometric method was developed as a candidate reference method for the accurate determination of acrylamide in potato chips, starch-rich foodstuff cooked at high temperature. Sample was spiked with 13C3-acrylamide and then extracted with water. The extract was further cleaned up with an Oasis HLB solid-phase extraction (SPE) cartridge and an Oasis mixed-phase cation exchange (MCX) SPE cartridge. The extract was analyzed by using LC/ESI/Tandem MS in positive ion mode. LC with a medium reversed-phase (C4) column was optimized to obtain adequate chromatographic retention and separation of acrylamide. MS was operated to selectively monitor [M+H]+ ions of the analyte and its isotope analogue at m/z 72 and m/z 75, respectively. Sample was also analyzed by the LC/MS with selectively monitoring the collisionally induced dissociation channels of m/z 72 → m/z 55 and m/z 75 → 58. Compared to the LC/MS chromatograms, the LC/MS/MS chromatograms showed substantially reduced background chemical noises coming from solvent clusters formed during ESI spray processes and interferences from sample matrix. Repeatability and reproducibility studies showed that the LC/MS/MS method is a reliable and reproducible method which can provide a typical method precision of 1.0% while the LC/MS results are influenced by chemical interferences.

Assessment of Environmental Pollution for Streams of Andong City in Gyeongbuk Province Using Invertebrate Biomarker and Chemical Residual Analysis (무척추동물 생체지표와 화학잔류량 분석을 통한 경북 안동지역내 하천들의 환경오염 평가)

  • Ryoo Keon-Sang;Choi Jong-Ha;Kim Young-Gyun;Cho Sung-Hwan;Lee Hwa-Sung
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.583-596
    • /
    • 2005
  • Samples of water, soil, and sediment were taken from 10 streams of Andong city in Gyeongbuk province in October 2004. To assess the degree of environmental pollution for each stream site, the chemical analyses of pollutants such as T-N, T-P, COD, heavy metal, organophosphorous and organochlorine pesticides, and dioxin-like PCB congeners were implemented using the standard process tests or the U. S. EPA methods. In addition, biological assessment using insect immune biomarkers was conducted on the same environmental samples to complement the chemical assessment. Except Waya stream (T-N; 2.91 mg/L, T-P; 0.16 mg/L, COD; 14.0 mg/L) with above the environmental quality standards, the T-P and COD concentrations of 9 sites are relatively low. The contents of Pb and Cd in samples taken from each stream were much lower than environmental quality standards. However, in comparison with soil samples of other streams, several times higher concentrations of Pb and Cd were found in locations at Mi, Gilan, Yeonha, and Waya stream sites. Dementon-S-methyl, diazinon, parathion, and phenthoate compounds among organophosphorous pesticides were detected as concentrations of ppb levels, respectively, from soil samples collected in the vicinity of Gilan, Mi, Norim, and Waya stream. On the other hand, 16 organochlorine pesticides and 12 dioxin-like PCB congeners selected in this study were not found in all samples. In particular, considering significant disrupting effects of Waya stream's samples on insect immune capacity, this stream seems to be contaminated with investigated and/or univestigated pollutants in this study.

A Study on Establishment of Essential Performance Evaluation Criteria for C-arm Computed Tomography (C-arm CT의 필수 성능평가 기준 마련을 위한 연구)

  • Kim, Eun-Hye;Park, Hye-Min;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.127-134
    • /
    • 2022
  • In order to overcome the image quality limitations of the conventional C-arm, a flat panel detector (FPD) is used to enhance spatial resolution, detective quantum efficiency, frame rate, and dynamic range. Three-dimensional (3D) visualized information can be obtained from C-arm computed tomography (CT) equipped with an FPD, which can reduce patient discomfort and provide various medical information to health care providers by conducting procedures in the interventional procedure room without moving the patient to the CT scan room. Unlike a conventional C-arm device, a C-arm CT requires different basic safety and essential performance evaluation criteria; therefore, in this study, basic safety and essential performance evaluation criteria to protect patients, medical staff, and radiologists were derived based on International Electrotechnical Commission (IEC) standards, the Ministry of Food and Drug Safety (MFDS) standards in Korea, and the rules on the installation and operation of special medical equipment in Korea. As a result of the study, six basic safety evaluation criteria related to electrical and mechanical radiation safety (leakage current, collision protection, emergency stopping device, overheating, recovery management, and ingress of water or particulate matter into medical electrical (ME) equipment and ME systems: footswitches) and 14 essential performance evaluation criteria (accuracy of tube voltage, accuracy of tube current, accuracy of loading time, accuracy of current time product, reproducibility of radiation output, linearity and consistency in radiography, half layer value in X-ray equipment, focal size and collimator, relationship between X-ray field and image reception area, consistency of light irradiation versus X-ray irradiation, performance of the mechanical device, focal spot to skin distance accuracy, image quality evaluation, and technical characteristic of cone-beam computed tomography) were selected for a total of 20 criteria.

The Role of Charge and Retention in Effective Wet end Management

  • Rantala, T.;Nokelainen J.;Ojala, T;Dr. Taina Sopenlehto
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.06a
    • /
    • pp.1-10
    • /
    • 2000
  • The development of paper machines, increasing machine speeds with new, mostly low basis weight and/or high ash content paper grades, as well as the fact that several trends regarding process items have increased the sensitivity of papermaking. At the same time, papermakers are looking for flexibility in the production line. We can say that with all PMs the biggest benefits with the lowest capital spending can be achieved by focusing on improved wet end management. In order to manage wet end chemistry on a paper machine, our goal is to control sub-process through which we can influence the operation of the entire wet end with maximum effect. Key measurements and controls are-white water consistency control which is the most effective way to control retention - charge demand measurement and control which takes care of concentration of the anionic material entering to PM -ash measurements and controls which are deeply related to retention and paper quality This paper presents and concentrates to two of these key controls ; retention and charge. The purpose of charge control is to give the process control the tools to react to changes caused by amount of dissolved and colloida material incoming to wet end system. It is called coagulation or fixing control. Retention control is then taking care of retention aid flow to the process by responding any changes seen in white water consistency. It is called flocculation control. Each of these solutions separately , and even more effectively all together, stabilize the wet end operations and so greatly improve the produced paper quality and machine runnability. Practical results will be presented and they are referring to the latest mill cases. We have developed the first wet end measuring system in the late 1980s and control solutions based on this modern measuring technology were completely updated in 1990s. This paper introduces the principle, operation , and results of our unique wet end analyzers (retention and charge ) which are at the level of automation solutions as a part of paper machine quality control Especially our newest member of the platform , on-line charge analyzer has reached and set new standards to the on-line charge monitoring.

The Role of Charge and Retention in Effective Wet End Management

  • Rantala, T.;Nokelainen, J.;Ojala, T.;Sopenlehto, Taina
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.5
    • /
    • pp.44-53
    • /
    • 2000
  • The development of paper machines, increasing machine speeds with new, mostly low basis weight and/or high ash content paper grades, as well as the fact that several trends regarding process items have increased the sensitivity of papermaking. At the same time, papermakers are looking for flexibility in the production line. We can say that with all PMs, the biggest benefits with the lowest capital spending can be achieved by focusing on improved wet end management. In order to manage wet end chemistry on a paper machine, our goal is to control subprocesses through which we can influence the operation of the entire wet end with maximum effect. Key measurements and controls are - white water consistency control which is the most effective way to control retention. - charge demand measurement and control which takes care of concentration of the anionic material entering to PM. - ash measurements and controls which are deeply related to retention and paper quality. This paper presents and concentrates to two of these key controls: retention and charge. The purpose of charge control is to give the process control the tools to react to changes caused by amount of dissolved and colloidal material incoming to wet end system. It is called coagulation or fixing control. Retention control is then taking care of retention aid flow to the process by responding any changes seen in white water consistency. It is called flocculation control. Each of these solutions separately, and even more effectively all together, stabilize the wet end operations and so greatly improve the produced paper quality and machine runnability. Practical results will be presented and they are referring to the latest mill cases. We have developed the first wet end measuring system in the late 1980s and control solutions based on this modern measuring technology were completely updated in 1990s. This paper introduces the principle, operation, and results of our unique wet end analyzers (retention and charge) which are at the level of automation solutions as a part of paper machine quality control. Especially our newest member of the platform, on-line charge analyzer has reached and set new standards to the on-line charge monitoring.

  • PDF

A Proposal for Improving the Measurement and Management of Unit Water Content in In-Situ Concrete (현장 타설 콘크리트의 단위수량 측정 및 관리 개선 방안 제시)

  • Yun, Ja-yeon;Jang, Hyo-Jun;Lee, Taegyu;Choi, Hyeonggil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.3
    • /
    • pp.319-329
    • /
    • 2024
  • This study examined domestic and international regulations concerning concrete unit weight, along with an evaluation of unit weight in concrete poured on construction sites. Fluctuations in unit weight were observed to correlate with concrete quality issues such as material separation, bleeding, and latency. A word cloud analysis, centered on the concept of concrete quality, further highlighted the significant influence of unit weight. Comparative analysis between Korea and Japan revealed few substantial differences in unit weight management and measurement techniques. However, calculation of concrete unit weight at delivery, using the unit volume mass method, indicated considerable variability among random on-site samples. Notably, the unit weight often exceeded the recommended standard. These findings emphasize the necessity for strict adherence to unit weight standards by all stakeholders involved in concrete production and construction, including ready-mix concrete (REMICON) producers, construction firms, and inspectors. To ensure consistent quality of cast concrete on-site, the establishment of a more comprehensive and practical system is recommended, incorporating measures such as on-site inspections.

Study on Material Segregation of Grout and Filling Characteristic of Grouting for Post-Tensioned Concrete Beam (PC 그라우트의 재료분리 및 PC 빔 그라우팅 충전성에 관한 연구)

  • Lee, Jun-Ki;Choi, Joon-Ho;Yoon, Jeong-Seob;Cho, In-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.419-426
    • /
    • 2010
  • This paper discusses a series of experiments including material improvement in order to ensure quality of grouting for the post-tensioned structure. In presstressed concrete, grouting refers to the construction procedure of filling empty space of duct enclosing the prestress tendons using cementitious material, To date, adequate quality control of the grouting has not been established in Korea because the relationship between the grouting and durability of post-tensioned structure is not well-recognized. The Korean standard does not consider the important material characteristic, wick effect, which is caused by tendons in the ducts, and furthermore current standard testing method does not quantify reasonable material segregation. As a result, the grout material, which satisfies the current material standards, may well exhibit excessive bleeding of water or shrinkage during construction. In this study, international codes and standards related to grouting were surveyed. The mix proportions of the constituents and novel admixtures were suggested to meet equivalently with these standards. Performance of this enhanced grout was compared with common domestic grouts using the international standard testing method. A series of mock-up specimens considering geometry of PC beam was constructed and grout flow pattern was observed as the grout was injected. It was observed that the grouting performance was highly influenced by material properties and filling characteristic can be varied depending on geometry of ducts.

Characteristics of Artificial Soils Produced from Sludge (슬러지를 이용하여 생산한 인공토양의 특성)

  • Yoon, Chun-Gyeong;Kim, Sun-Joo;Kwun, Tae-Young;Lee, Nam-Chool
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.200-204
    • /
    • 1998
  • Physical and chemical properties of artificial soil produced by firing process were analyzed and compared with normal dry field soil and soil quality standards. Material used for production was water and wastewater treatment sludge, chabizite, and lime. The mixed material was thermally treated in the firing kiln at about $300^{\circ}C$ and $1,000^{\circ}C$, respectively, as per designed process. General properties of the artificial soil were classified as sand by unified soil classification method and similar to the dry-field soil, and even soil conditioning effect were expected when it is mixed properly with normal soil. The artificial soil is high in pH and permeability compared to the dry-field soil. Heavy metal concentrations of the artificial soil met the soil quality standards for the farmland. Overall, the artificial soil was thought to be an appropriate soil which can be returned safely to the nature without significant adverse effect. The cost for the artificial soil production process needs to be lowered for practical application as a sludge treatment, therefore, commercializing of the artificial soil is under review.

  • PDF

Design for Landfill Gas Application by Low Calorific Gas Turbine and Green House Optimization Technology (Low Calorific Gasturbine 매립지 적용 및 유리온실 운용기술 설계)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Lee, Jung-Bin;Rhim, Sang-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.244.1-244.1
    • /
    • 2010
  • Bio energy development by using Low Calorific Gas Turbine(LCGT) has been developed for New & Renewable energy source for next generation power system, low fuel and operating cost method by using the renewable energy source in landfill gas (LFG), Food Waste, water waste and Livestock biogas. Low calorific fuel purification by pretreatment system and carbon dioxide fixation by green house system are very important design target for evaluate optimum applications for bio energy. Main problems and accidents of Low Calorific Gas Turbine system was derived from bio fuel condition such as hydro sulfide concentration, siloxane level, moisture concentration and so on. Even if the quality of the bio fuel is not better than natural gas, LCGT system has the various fuel range and environmental friendly power system. The mechanical characterisitics of LCGT system is a high total efficiency (>70%), wide range of output power (30kW - 30MW class) and very clean emmission from power system (low NOx). Also, we can use co-generation system. A green house designed for four different carbon dioxide concentration from ambient air to 2000 ppm by utilizing the exhaust gas and hot water from LCGT system. We look forward to contribute the policy for Renewable Portfolio Standards(RPS) by using LCGT power system.

  • PDF

A Study on the Supply Methods of Heating Energy in Rural Regions by Using Wood Chips -Focusing on the Production Method of Wood Chips for Fuel though Natural Drying Method- (목재칩을 이용한 농촌지역 난방에너지 공급 방법 연구 -자연건조 방식을 통한 연료용 목재칩 생산방법을 중심으로-)

  • An, Byeong-IL;Ko, Kyoung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.401-408
    • /
    • 2021
  • Supplies of wood chips for fuel tend to increase owing to energy decentralization and new renewable energy policies. This study suggests a technical method that is necessary in order to supply heating energy to rural regions by using wood chips for fuel. Therefore, this study investigates the effects of natural drying methods for eight months by installing a drying facility with natural ventilation capable of loading 10 tons of wood chips, and which derive a natural drying method based on this to meet the quality standards of wood chips for fuel. The study results confirm that it is possible to produce wood chips for high-quality fuel with water content at 20% or less after around 90 days of drying, provided that a drying facility with natural ventilation is equipped with materials that can be procured easily in rural regions. It is also possible to block the proliferation and fermentation of molds that affect the quality of wood chips, provided that intake and exhaust systems adhering to standards are equipped.