The objective of this study is to develop and evaluate simple and multiple regression models for Total Organic Carbon (TOC) concentration estimation in stream flow. For development (using water quality data in 2012) and evaluation (using water quality data in 2011) of regression models, we used water quality data from downstream of Yeongsan river basin during 2011 and 2012, and correlation analysis between TOC and water quality parameters was conducted. The concentrations of TOC were positively correlated with Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), TN (Total Nitrogen), Water Temperature (WT) and Electric Conductivity (EC). From these results, simple and multiple regression models for TOC estimation were developed as follows : $TOC=0.5809{\times}BOD+3.1557$, $TOC=0.4365{\times}COD+1.3731$. As a result of the application evaluation of the developed regression models, the multiple regression model was found to estimate TOC better than simple regression models.
A decision support system DSS-WQMRA (Decision Support System-Water Quality Management in Rural Area) was developed to help regional planners for the water quality management in a rural basin. The integrated model DSS-WQMRA, written in JAVA, includes four subsystems such as a GIS, a database, water quality simulation models and a decision model. In the system, the GIS deals with landuse and the location of pollutant sources. The database manages each data and supplies input data for various water quality simulation models. the water quality simulation model is composed of the GWLF( Generalized Watershed Loading Function), PCLM(Pollutant Loading Calculation Module) and the WASP5 model. The decision model based on mixed integer programming is designed to determine optimal costs and thus allow the selection of managemental practices to meet the water quality criteria. The methodology was tested with an example application in the Bokha River Basin, Kyunggi Province in Korea. It was proved that the integrated model DSS-WQMRA could be very useful for water quality management including the non-point source pollution in rural areas.
Forecasting of water quality variation is not an easy process due to the complicated nature of various water quality factors and their interrelationships. The objective of this study is to test the applicability of neural network models to the forecasting of the water quality at Dalchun station in Han River. Input data is consist of monthly data of concentration of DO, BOD, COD, SS and river flow. And this study selected optimal neural network model through changing the number of hidden layer based on input layer(n) from n to 6n. After neural network theory is applied, the models go through training, calibration and verification. The result shows that the proposed model forecast water quality of high efficiency and developed web-based water quality forecasting system after extend model
BACKGROUND: Water quality data are collected less frequently than flow data because of the cost to collect and analyze, while water quality data corresponding to flow data are required to compute pollutant loads or to calibrate other hydrology models. Regression models are applicable to interpolate water quality data corresponding to flow data. METHODS AND RESULTS: A regression model was suggested which is capable to consider flow and time variance, and the regression model coefficients were calibrated using various measured water quality data with genetic-algorithm. Both LOADEST and the regression using genetic-algorithm were evaluated by 19 water quality data sets through calibration and validation. The regression model using genetic-algorithm displayed the similar model behaviors to LOADEST. The load estimates by both LOADEST and the regression model using genetic-algorithm indicated that use of a large proportion of water quality data does not necessarily lead to the load estimates with smaller error to measured load. CONCLUSION: Regression models need to be calibrated and validated before they are used to interpolate pollutant loads, as separating water quality data into two data sets for calibration and validation.
Accurate assessment of chlorophyll-a (Chl-a) concentrations in inland waters using remote sensing is challenging due to the optical complexity of case 2 waters. and the inherent optical properties (IOPs) of natural waters are the most significant factors affecting light propagation within water columns, and thus play indispensable roles on estimation of Chl-a concentrations. Despite its importance, no IOPs retrieval model was specifically developed for inland water bodies, although significant efforts were made on oceanic inversion models. So we have applied and validated a recently developed Red-NIR three-band model and an IOPs Inversion Model for estimating Chl-a concentration and deriving inland water IOPs in Lake Uiam. Three band and IOPs based Chl-a estimation model accuracy was assessed with samples collected in different seasons. The results indicate that this models can be used to accurately retrieve Chl-a concentration and absorption coefficients. For all datasets the determination coefficients of the 3-band models versus Chl-a concentration ranged 0.65 and 0.88 and IOPs based model versus Chl-a concentration varied from 0.73 to 0.83 respectively. and Comparison between 3-band and IOPs based models showed significant performance with decrease of root mean square error from 18% to 33.6%. The results of this study provides the potential of effective methods for remote monitoring and water quality management in turbid inland water bodies using hyper-spectral remote sensing.
The applicabilities and validities of two methodologies fur the prediction of THM (trihalomethane) formation in a water pipeline system were proposed and discussed. One is the multiple regression technique and the other is an artificial neural network technique. There are many factors which influence water quality, especially THMs formations in water pipeline systems. In this study, the prediction models of THM formation in water pipeline systems are developed based on the independent variables proposed by American Water Works Association(AWWA). Multiple linear/nonlinear regression models are estimated and three layer feed-forward artificial neural networks have been used to predict the THM formation in a water pipeline system. Input parameters of the models consist of organic compounds measured in water pipeline systems such as TOC, DOC and UV254. Also, the reaction time to each measuring site along pipeline is used as input parameter calculated by a hydraulic analysis. Using these variables as model parameters, four models are developed. And the predicted results from the four developed models are compared statistically to the measured THMs data set. It is shown that the artificial neural network approaches are much superior to the conventional regression approaches and that the developed models by neural network can be used more efficiently and reproduce more accurately the THMs formation in water pipeline systems, than the conventional regression methods proposed by AWWA.
Multi-dimensional hydrodynamic and water quality models are widely used to simulate the physical and biogeochemical processes in the surface water systems such as reservoirs and estuaries. Most of the models have adopted the Eulerian grid modeling framework, mainly because it can reasonably simulate physical dynamics and chemical species concentrations throughout the entire model domain. Determining the optimum grid cell size is important when using the Eulerian grid-based three-dimensional water quality models because the characteristics of species are assumed uniform in each of the grid cells and chemical species are represented by concentration (mass per volume). The objective of this study was to examine the effect of grid-size of a three dimensional hydrodynamic and water quality model (EFDC) on hydrodynamics and mass transport in the Saemangeum Reservoir. Three grid resolutions, respectively representing coarse (CG), medium (MG), and fine (FG) grid cell sizes, were used for a sensitivity analysis. The simulation results of numerical tracer showed that the grid resolution affects on the flow path, mass transport, and mixing zone of upstream inflow, and results in a bias of temporal and spatial distribution of the tracer. With the CG, in particular, the model overestimates diffusion in the mixing zone, and fails to identify the gradient of concentrations between the inflow and the ambient water.
우리나라에서도 하천, 호소 및 하구에서의 수질 문제가 심각하게 대두되고 있다. 담수호 및 하천 유역의 부영양화를 극복하기 위해서는 수질의 체계적인 관리가 필요하며 담수호 및 유역의 수질관리를 위해서는 유역에 적합한 수문 모델과 하천 및 호소 등 수질 모델을 적용하여 이러한 모델의 예측 결과를 바탕으로 수질오염 개선 대책을 제시하여야 한다. 유역에서의 적절한 수질오염 개선 대책을 적용하기 위해서는 정확한 오염원의 파악과 오염부하량을 예측하고 제시해야 한다. GIS를 기반으로 오염원 데이터베이스와 수문 및 수질 예측 모델의 연계가 공간상의 위치를 기반으로 통합적으로 이루어짐으로써 수질 모델링 과정을 종합적으로 포함하여 유역 수질을 개선할 수 있는 체계적 지원이 가능할 것이다. 본 논문에서는 담수호 및 하천 유역에서 수질오염을 정확하게 예측하기 위해서 GIS 기반의 공간정보를 활용하여 수질 모델 시스템을 구축하여 향후 담수호 유역의 종합적인 수질관리 방법을 제시하고 수질 모델링을 통해 오염원의 체계적인 관리와 자동화된 공간정보를 활용하여 수문 및 수질 모델을 용이하고 효율적으로 운용하고자 본 연구를 수행하였다.
The QUAL2E and Box-Jenkins time series model were applied to the Miho river, a main tributary of the Geum river, to predict water quality. The models are widely used to predict water quality in rivers and watersheds because of its accuracy. As results of the study, we concluded as follows: Pollutant loadings in upper stream of Miho river were determined to 57,811 kgBOD/d, 19,350 kgTN/d, and 5,013 kgTP/d. The loading of TN in Mushim river was 19,450 kgTN/d, respectively. As the mass loadings were compared with pollutant sources, it concluded that the farming livestock contributed highly to mass emissions of BOD and TP and the population contributed to TN mass loading. The observed water quality values were applied to the models to verify and the models were used to predict the water quality. The QUAL2E Model predicted the concentrations of DO, BOD, TN and TP with high accuracy, but not for E-Coli. The Box-Jenkins time series model also showed high prediction for DO, BOD and TN. However, the concentrations of TP and E-Coli were poorly predicted. The result shows that the QUAL2E model is more applicable in Miho basin for prediction of water quality compared to Box-Jenkins time series model.
Objectives: The objective of this study was to build COD regression models for the Han River and evaluate water quality. Methods: Water quality data sets for the dry season (as of January) during a four-year period (2012-2015) were collected from the database of the Han River automatic water quality monitoring stations. Statistical techniques, including combined genetic algorithm-multiple linear regression (GA-MLR) were used to build five-descriptor COD models. Multivariate statistical techniques such as principal component analysis (PCA) and cluster analysis (CA) are useful tools for extracting meaningful information. Results: The $r^2$ of the best COD models provided significant high values (> 0.8) between 2012 and 2015. Total organic carbon (TOC) was a surrogate indicator for COD (as COD/TOC) with high reliability ($r^2=0.63$ in 2012, $r^2=0.75$ for 2013, $r^2=0.79$ for 2014 and $r^2=0.85$ for 2015). The ratios of COD/TOC were calculated as 2.08 in 2012, 1.79 in 2013, 1.52 and 1.45 in 2015, indicating that biodegradability in the water body of the Han River was being sustained, thereby further improving water quality. The BOD/COD ratio supported these findings. The cluster analysis revealed higher annual levels of microorganisms and phosphorous at stations along the Hangang-Seoul and Hantangang areas. Nevertheless, the overall water quality over the last four years showed an observable trend toward continuous improvement. These findings also suggest that non-point pollution control strategies should consider the influence of upstreams and downstreams to protect water quality in the Han River. Conclusion: This data analysis procedure provided an efficient and comprehensive tool to interpret complex water quality data matrices. Results from a trend analysis provided much important information about sources and parameters for Han River water quality management.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.