• Title/Summary/Keyword: Water Quality Models

Search Result 464, Processing Time 0.03 seconds

DEVELOPMENT OF ARTIFICIAL NEURAL NETWORK MODELS SUPPORTING RESERVOIR OPERATION FOR THE CONTROL OF DOWNSTREAM WATER QUALITY

  • Chung, Se-Woong;Kim, Ju-Hwan
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.143-153
    • /
    • 2002
  • As the natural flows in rivers dramatically decrease during drought season in Korea, a deterioration of river water quality is accelerated. Thus, consideration of downstream water quality responding to changes in reservoir release is essential for an integrated watershed management with regards to water quantity and quality. In this study, water quality models based on artificial neural networks (ANNs) method were developed using historical downstream water quality (rm $\NH_3$-N) data obtained from a water treatment plant in Geum river and reservoir release data from Daechung dam. A nonlinear multiple regression model was developed and compared with the ANN models. In the models, the rm NH$_3$-N concentration for next time step is dependent on dam outflow, river water quality data such as pH, alkalinity, temperature, and rm $\NH_3$-N of previous time step. The model parameters were estimated using monthly data from Jan. 1993 to Dec. 1998, then another set of monthly data between Jan. 1999 and Dec. 2000 were used for verification. The predictive performance of the models was evaluated by comparing the statistical characteristics of predicted data with those of observed data. According to the results, the ANN models showed a better performance than the regression model in the applied cases.

  • PDF

Evaluation of Water Quality Prediction Models at Intake Station by Data Mining Techniques (데이터마이닝 기법을 적용한 취수원 수질예측모형 평가)

  • Kim, Ju-Hwan;Chae, Soo-Kwon;Kim, Byung-Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.705-716
    • /
    • 2011
  • For the efficient discovery of knowledge and information from the observed systems, data mining techniques can be an useful tool for the prediction of water quality at intake station in rivers. Deterioration of water quality can be caused at intake station in dry season due to insufficient flow. This demands additional outflow from dam since some extent of deterioration can be attenuated by dam reservoir operation to control outflow considering predicted water quality. A seasonal occurrence of high ammonia nitrogen ($NH_3$-N) concentrations has hampered chemical treatment processes of a water plant in Geum river. Monthly flow allocation from upstream dam is important for downstream $NH_3$-N control. In this study, prediction models of water quality based on multiple regression (MR), artificial neural network and data mining methods were developed to understand water quality variation and to support dam operations through providing predicted $NH_3$-N concentrations at intake station. The models were calibrated with eight years of monthly data and verified with another two years of independent data. In those models, the $NH_3$-N concentration for next time step is dependent on dam outflow, river water quality such as alkalinity, temperature, and $NH_3$-N of previous time step. The model performances are compared and evaluated by error analysis and statistical characteristics like correlation and determination coefficients between the observed and the predicted water quality. It is expected that these data mining techniques can present more efficient data-driven tools in modelling stage and it is found that those models can be applied well to predict water quality in stream river systems.

Starategy for Advanced Decision Supprot System Development for Integrated Management of Water Resources and Quality (수자원 수질 종합관리를 위한 ADSS 개발 전략)

  • 심순보
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1992.07a
    • /
    • pp.443-447
    • /
    • 1992
  • This study describes the strategy for advanced decision support system (ADSS) development for integrated management of water resources and quality in reservoir systems. The developed ADSS consists of database that contain hydrologic data, observed operational data, and data to support specific reservoir operations simulation, optimization models, and water quality models. The optimization model, mass balance simulation model and water quality models are used in a general prototype ADSS, menu driven controlling framework that assists the user to specify and evaluate the alternative operational scenarios at one time. These alternative scenarios are evaluated by the models and the results are compared through the use of a graphical based display system. This graphical based system uses an icon based schematic representation of the system to organize the presentation of the results. The ADSS includes the ability to use monthly or weekly time periods of analysis for the models and it can use monthly historical or stochastically generated inflows.

  • PDF

Evaluation of the Dam Release Effect on Water Quality using Time Series Models (시계열 모형의 적용을 통한 댐 방류의 수질개선 효과 검토)

  • Kim, Sangdan;Yoo, Chulsang
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.685-691
    • /
    • 2004
  • Water quality forecasting with long term flow is important for management and operation of river environment. However, it is difficult to set up and operate a physical model for water quality forecasting due to large uncertainty in the data required for model setting. Therefore, relatively simpler stochastic approaches are adopted for this problem. In this study we try several multivariate time series models such as ARMAX models for the possible substitute for water quality forecasting. Those models are applied to the BOD and COD levels at Noryangin station, Han river, and also evaluated the effect of release from Paldang dam on them. Monthly BOD and COD data from 1985 to 1991 (7 years) are used for model building and another two year data for model testing. As a result of the study, the effect of improvement on water quality is much more effective combining with the water quality improvement of dam release than considering only increment of dam release in the downstream Han river.

Conjunctive Use of SWAT and WASP Models for the Water Quality Prediction in a Rural Watershed (농촌유역 하천의 수질예측을 위한 SWAT모형과 WASP모형의 연계운영)

  • 권명준;권순국;홍성구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.116-125
    • /
    • 2003
  • Predictions of stream water quality require both estimation of pollutant loading from different sources and simulation of water quality processes in the stream. Nonpoint source pollution models are often employed for estimating pollutant loading in rural watersheds. In this study, a conjunctive application of SWAT model and WASP model was made and evaluated for its applicability based on the simulation results. Runoff and nutrient loading obtained from the SWAT model were used for generating input data for WASP model. The results showed that the simulated runoff was in good agreement with the observed data and indicated reasonable applicability. Loading for the water quality parameters predicted by WASP model also showed a reasonable agreement with the observed data. It is expected that stream water quality could be predicted by the coupled application of the two models, SWAT and WASP, in rural watersheds.

Future Development Direction of Water Quality Modeling Technology to Support National Water Environment Management Policy (국가 물환경관리정책 지원을 위한 수질모델링 기술의 발전방향)

  • Chung, Sewoong;Kim, Sungjin;Park, Hyungseok;Seo, Dongil
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.621-635
    • /
    • 2020
  • Water quality models are scientific tools that simulate and interpret the relationship between physical, chemical and biological reactions to external pollutant loads in water systems. They are actively used as a key technology in environmental water management. With recent advances in computational power, water quality modeling technology has evolved into a coupled three-dimensional modeling of hydrodynamics, water quality, and ecological inputs. However, there is uncertainty in the simulated results due to the increasing model complexity, knowledge gaps in simulating complex aquatic ecosystem, and the distrust of stakeholders due to nontransparent modeling processes. These issues have become difficult obstacles for the practical use of water quality models in the water management decision process. The objectives of this paper were to review the theoretical background, needs, and development status of water quality modeling technology. Additionally, we present the potential future directions of water quality modeling technology as a scientific tool for national environmental water management. The main development directions can be summarized as follows: quantification of parameter sensitivities and model uncertainty, acquisition and use of high frequency and high resolution data based on IoT sensor technology, conjunctive use of mechanistic models and data-driven models, and securing transparency in the water quality modeling process. These advances in the field of water quality modeling warrant joint research with modeling experts, statisticians, and ecologists, combined with active communication between policy makers and stakeholders.

A Study of Computer Models Used in Environmental Impact Assessment I : Water Quality Models (환경영향평가에 사용되는 컴퓨터 모델에 관한 연구 I : 수질 모델)

  • Park, Seok-Soon;Na, Eun-Hye
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.1
    • /
    • pp.13-24
    • /
    • 2000
  • This paper presents a study of water quality model applications in environmental impact statements which were submitted during recent years in Korea. Most of the applications have reported that the development projects would have significant impacts on the water quality, especially, of streams and rivers. The water quality models, however, were hardly used as an impact prediction tool. Even in the cases where models were used, calibration and verification studies were not performed and thus the predicted results would not be reliable. These poor model applications in environmental impact assessment can be attributable to the fact that there were no available model application guidelines as well as no requirements by the review agency. In addition, the expected waste loads were improperly estimated in most cases, especially in non-point sources, and the predicted parameters were not good enough to understand water quality problems expected from the proposed plans. The effects of mitigation measures were not analyzed in most cases. Again, these can be attributed to no formal guidelines available for impact predictions until now. A brief guideline is described in this paper, including model selection, calibration and verification, impact prediction, and analysis of effects of mitigation measures. The results of this study indicate that the model application should be required to overcome the current improper predictions of environmental impacts and the guidelines should be developed in detail and provided.

  • PDF

ARIMA 모형에 의한 하천수질 예측

  • 류병로;한양수
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.433-440
    • /
    • 1998
  • This study was carried out to develop the stream water quality model for the intaking station of Kongju waterworks in the Keum River system. The monthly water quality(total nitrogen and total phosphorus) with periodicity and trend were forecasted by multiplicative ARIU models and then the applicability of the models was tested based on 7 years of the historical monthly water quality data at Kongju intaking strate. The parameter estimation was made with the monthly observed data. The last one year data was used to compare the forecasted water Quality by ARU model with the observed one. The models are ARIMA(2,0,0)$\times$(0,1,1)l2 for total nitrogen, ARIMA(0,1,1)x(0,1,1)l2 for total phosphorus. The forecasting results showed a good agreement with the observed data. It is implying the applicability of multiplicative ARIMA model for forecasting monthly water quality at the Kongju site.

  • PDF

Development of Water Quality Modeling in the United States

  • Ambrose, Robert B;Wool, Tim A;Barnwell, Thomas O.
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.200-210
    • /
    • 2009
  • The modern era of water quality modeling in the United States began in the 1960s. Pushed by advances in computer technology as well as environmental sciences, water quality modeling evolved through five broad periods: (1) initial model development with mainframe computers (1960s - mid 1970s), (2) model refinement and generalization with minicomputers (mid 1970s - mid 1980s), (3) model standardization and support with microcomputers (mid 1980s - mid 1990s), (4) better model access and performance with faster desktop computers running Windows and local area networks linked to the Internet (mid 1990s - early 2000s), and (5) model integration and widespread use of the Internet (early 2000s - present). Improved computer technology continues to drive improvements in water quality models, including more detailed environmental analysis (spatially and temporally), better user interfaces and GIS software, more accessibility to environmental data from on-line repositories, and more robust modeling frameworks linking hydrodynamics, water quality, watershed and atmospheric models. Driven by regulatory needs and advancing technology, water quality modeling will continue to improve to better address more complicated water bodies and pollutant types, and more complicated management questions. This manuscript describes historical trends in water quality model development in the United States, reviews current efforts, and projects promising future directions.

Real Time Water Quality Forecasting at Dalchun Using Nonlinear Stochastic Model (추계학적 비선형 모형을 이용한 달천의 실시간 수질예측)

  • Yeon, In-sung;Cho, Yong-jin;Kim, Geon-heung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.738-748
    • /
    • 2005
  • Considering pollution source is transferred by discharge, it is very important to analyze the correlation between discharge and water quality. And temperature also influent to the water quality. In this paper, it is used water quality data that was measured DO (Dissolved Oxygen), TOC (Total Organic Carbon), TN (Total Nitrogen), TP (Total Phosphorus) at Dalchun real time monitoring stations in Namhan river. These characteristics were analyzed with the water quality of rainy and nonrainy periods. Input data of the water quality forecasting models that they were constructed by neural network and neuro-fuzzy was chosen as the reasonable data, and water quality forecasting models were applied. LMNN (Levenberg-Marquardt Neural Network), MDNN (MoDular Neural Network), and ANFIS (Adaptive Neuro-Fuzzy Inference System) models have achieved the highest overall accuracy of TOC data. LMNN and MDNN model which are applied for DO, TN, TP forecasting shows better results than ANFIS. MDNN model shows the lowest estimation error when using daily time, which is qualitative data trained with quantitative data. If some data has periodical properties, it seems effective using qualitative data to forecast.